
............... untaln
rence

_dItigr,
Methods

t
r
i
1
L

(NASA-CP-3224-Pt-I) THE SIXTH

COPPER MOUNTAIN CONFERENCE ON

MULTIGRTO METHODS, °ART i (NASA)

35I p

H1/64 0197132

...... ' ;; =[;;

[

F

i

=

L

£ 2

NASA Conference Publication 3224
Part 1

Sixth Copper Mountain
Conference on

Multigrid
Methods

Edited by
N. Duane Melson

NASA Langley Research Center

Hampton, Virginia

T. A. Manteuffel and S. F. McCormick

University of Colorado

Denver, Colorado

Proceedings of a workshop cosponsored by the National

Aeronautics and Space Administration, Washington, D.C.,

the Air Force Office of Scientific Research,

Bolling Air Force Base, Washington, D.C., the

Department of Energy, Washington, D.C.,
and the National Science Foundation,

Washington, D.C., and held at
Copper Mountain, Colorado

April 4-9, 1993

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1993

PREFACE

The Sixth Copper Mountain Conference on Multigrid Methods was held on
April 4--9, 1993 at Copper Mountain Colorado and was cosponsored by NASA,
the Air Force Office of Scientific Research, the Department of Energy, and the
National Science Foundation. The University of Colorado at Denver, Front Range
Scientific Computations, Inc., and the Society for Industrial and Applied
Mathematics provided organizational support for the conference.

This document is a collection of many of the papers that were presented at
the conference and thus represents the conference proceedings. NASA Langley
graciously provided printing of this book so that all of the papers could be
presented in a single forum. Each paper was reviewed by a member of the
conference organizing committee under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from
these proceedings. The vibrancy in this field is amply expressed in these
important papers, and the collection clearly shows its rapid trend to further
diversity and depth.

N. Duane Melson

NASA Langley Research Center

Steve F. McCormick and
Tom A. Manteuffel

University of Colorado at Denver

The use of trademarks or manufacturer's names in this publication does not
constitute endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.

!il
t

PltiOK'OfNG PAGE BLANK NOT FILMED

ORGANIZING COMMITTEE

Joel Dendy
Los Alamos National Laboratory

Craig Douglas
IBM and Yale University

Paul Frederickson
RIACS

Van Henson

Naval Postgraduate School

Jan Mandel
The University of Colorado at Denver

Duane Melson

NASA Langley Research Center

Seymour Parter
University of Wisconsin - Madison

Joseph Pasciak
Brookhaven National Lab

Boris Rozovski

University of Southern California

John Ruge
University of Colorado at Denver

Kiaus Stueben
Gesellschaft f. Math. u. Datenverarbeitung

James Thomas
NASA Langley Research Center

Pieter Wesseling
Delft University

Olof Widlund
Courant Institute

iv

CONTENTS

Preface

Organizing Committee

iii

iv

Part 1

A Multigrid Solver for the Semiconductor Equations
Bernhard Bachmann and Asea Brown Boveri

FAS Multigrid Calculations of Three Dimensional Flow Using Non-Staggered Grids
D. Matovic, A. Pollard, H. A. Becker, and E. W. Grandmaison

17 -2_.

Multigrid and Cyclic Reduction Applied to the Helmholtz Equation
Kenneth Brackenridge

Uniform Convergence of Multigrid V-Cycle Iterations for Indefinite and Nonsymmetric
Problems

• • • • . • • • • • • • • • • • • • * • • • • • • • , • , • • * * • •

James H. Bramble, Do Y. Kwak, and Joseph E. Pasciak

A Multilevel Cost-Space Approach to Solving the Balance Long Transportation
Problem

Kevin J. Cavanaugh and Van Emden Henson

Vectorization and Parallelization of the Finite Strip Method for Dynamic Mindlin
Plate Problems

Hsin-Chu Chen and Ai-Fang He

Domain Decomposition Methods for Nonconforming Finite Element Spaces of
LaGrange-Type

Lawrence C. Cowsar

Nested Kryiov Methods and Preserving the Orthogonality 111 -_
Eric De Sturler and Diederik R. Fokkcma

Implementing Abstract Multigrid or Multilevel Methods 127"
Craig C. Douglas

Numerical Solution of Flame Sheet Problems with and without Multigrid Methods
Craig C. Douglas and Alexandrc Ern

143 _/b

A Mixed Method Poisson Solver for Three-Dimensional Self-Gravitating Astrophysical
Fluid Dynamical Systems 159 -] }

Comer Duncan and Jim Jones

Multigrid Methods for Differential Equations with Highly Oscillatory Coefficients 175 "--/:2_

Bjorn Engquist and Erding Luo

Application of Multigrid Methods to the Solution of Liquid Crystal Equations on a

SIMD Computer 191 _/_
Paul A. Farrell, Arden Ruttan, and Reinhardt R. Zeller

V

An Adaptive Multigrid Model for Hurricane Track Prediction 207 =/
Scott R. Fulton

Relaxation Schemes for Chebyshev Spectral Multigrid Methods 215 _-j_-

Yimin Kang and Scott R. Fulton

Multigrid Methods for a Semilinear PDE in the Theory of Pseudoplastic Fluids 231 -] (_
Van Emden Henson and A. W. Shaker

A Multilevel Adaptive Projection Method for Unsteady Incompressible Flow 243 _j/_

Louis H. Howell

Wavelet Multiresolution Analyses Adapted for the Fast Solution of Boundary Value -I
Ordinary Differential Equations 259

Bj6m Jawerth and Wim Sweldens

Comparison of Locally Adaptive Multigrid Methods: L.D.C., F.A.C. and F.I.C 275 -l q

Khodor Khadra, Philippe Angot, and Jean-Paul Caltagirone

Multi-Grid Domain Decomposition Approach for Solution of Navier-Stokes Equations
293 _£ _in Primitive Variable Form

Hwar-Ching Ku and Bala Ramaswamy

Compressible Turbulent Flow Simulation with a Multigrid Multiblock Method 305 -_!
Hans Kuerten and Bernard Geurts

A Nonconforming Multigrld Method Using Conforming Subspaces 317 r-2_

Chang Ock Lee

Muitigrid Method for Integral Equations and Automatic Programs 331 - Q-'_

Hosae Lee

An Object-Oriented Approach for Parallel Self Adaptive Mesh Refinement
on Block Structured Grids

Max Lemke, Kristian Witsch, and Daniel Quinlan

Part_.._.__22*

Optimal Resolution in Maximum Entropy Image Reconstruction from Projections
with Multigrid Acceleration 361

Mark A. Limber, Tom A. Manteuffel, Stephen F. McCormick, and David S. Sho!l

Flow Transition with 2-D Roughness Elements in a 3-D Channel 377

Zhining Liu, Chaoqun Liu, and Stephen F. McCormick

Multilevel Methods for Transport Equations in Diffusive Regimes 393
Thomas A. Manteuffel and Klaus Ressel

Analysis of Multigrid Methods on Massively Parallel Computers: Architectural

Implications
Lesley R. Matheson and Robert E. Tarjan

405

*Part 2 is presented under separate cover.

vi

Time-Accurate Navier-StokesCalculationswith Multigrid Acceleration
N. DuaneMelson,Mark S. Sanetrik,and Harold L. Atkins

........ 423

MGGHAT: Elliptic PDE Software with Adaptive Refinement, Multigrid and High
Order Finite Elements 439

William F. Mitchell

Looking for O(N) Navier-Stokes Solutions on Non-Structured Meshes 449
Eric Morano and Alain Dervieux

The Block Adaptive Multigrid Method Applied to the Solution of the Euler
Equations 465

Nikos Pantelelis

Multigrid Schemes for Viscous Hypersonic Flows 481
R. Radespiel and R. C. Swanson

Layout Optimization with Algebraic Multigrid Methods 497
Hans Regler and Ulrich RUde

Optimal Convolution SOR Acceleration of Waveform Relaxation with Application
to Semiconductor Device Simulation 513

Mark Reichelt

A Muitigrid Method for Steady Euler Equations on Unstructured Adaptive Grids 527
Kris Riemslagh and Erik Dick

Two-Level Schwarz Methods for Nonconforming Finite Elements and Discontinuous
Coefficients 543

Marcus Sarkis

An Automatic Multigrid Method for the Solution of Sparse Linear Systems
Yair Shapira, Moshe Israeli, and Avram Sidi

...... 567

A Multigrid Algorithm for the Cell-Centered Finite Difference Scheme
Richard E. Ewing and Jian Shen

........ 583

A Semi-Lagrangian Approach to the Shallow Water Equations
J. R. Bates, Stephen F. McCormick, John Ruge, David S. Sholl, and
Irad Yavneh

........... 593

Multigrid Solution of the Navier-Stokes Equations on Highly Stretched Grids with
Defect Correction 605

Peter M. Sockol

The Multigrid Preconditioned Conjugate Gradient Method 621
Osamu Tatebe

Mapping Robust Parallel Multigrid Algorithms to Scalable Memory Architectures
Andrea Overman and John Van Rosendale

635

Unstructured Multigrid Through Agglomeration 649
V. Venkatakrishnan, D. J. Mavriplis, and M. J. Berger

vii

Multigrid Properties of Upwind-Biased Data Reconstruction 663

Gary P. Warren and Thomas W. Roberts

On the Prediction of Multigrid Efficiency Through Local Mode Analysis 679
R. V. Wilson

i

Numerical:Study of a Multigrid Method with Four Smoothing Methods for the
Incompressible Navler-Stokes Equations in General Coordinates 691

S. Zeng and P. Wesseling

!

|

B

2
g
F

VIII

N 9 4 -
AMULTICRIDSOLVERFORTHESEMICONDUCTOREQUATIONS

2 3

Bernhard Bachmann

Institut fiir Angewandte Mathematik der Universitiit Ziirich,

P_mistr.74, 8001 Ziirich, Switzerland

and

Asea Brown Boveri, Corporate Research,

5405 Baden-D_ittwil, Switzerland.

SUMMARY

We present a multigrid solver for the exponential fitting method, applied to the current con-

tinuity equations of semiconductor device simulation in two dimensions. The exponential fitting

method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas

triangular element. This discretization method yields a good approximation of front layers and

guarantees current conservation. The corresponding stiffness matrix is an M-matrix. "Standard"

multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by

an unsymmetric part, which is due to the presence of strong convection in part of the domain.

To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods

and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can con-

struct nonstandard prolongation and restriction operators using easily computable weighted L 2-

projections based on suitable quadrature rules and the upwind effects of the discretization. The

resulting multigrid algorithm shows very good results, even for real-world problems and for lo-

cally refined grids.

1. INTRODUCTION

The exponential fitting method applied to the current continuity equations is based on a

mixed finite element discretization using the lowest-order Raviart-Thomas triangular element

[1]. This discretization yields a good approximation of front layers and guarantees current con-
servation. The corresponding scheme results in a large sparse system of equations, which is dom-

inated by an unsymmetric part. When applying multigrid algorithms to the resulting system (7),

the most difficult part is the construction of suitable prolongation and restriction operators. Us-

ing the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-

Raviart finite element discretization, we overcome this difficulty.

In § 2 we give some results from [2] concerning the mixed finite element discretization. We

determine the resulting system and show the interrelation with a nonconforming finite element

method. § 3 deals with the solution of the system of linear equations by our multigrid solver.

First we construct easily computable L2-projections, based on suitable quadrature rules and

the upwind effect of the discretization. Due to the presence of strong convection in part of the

domain it is also necessary to consider special smoothers for the multigrid algorithm. We use a

minimal residual method with ILU preconditioning. The results of the numerical tests are given

in §4.

J

2. THE EXPONENTIAL FITTING METHOD FOR CURRENT CONTINUITY EQUATIONS

2.1. Mixed Finite Element Method

Let {2 C _t 2 be a connected, bounded and polygonal domain. H'_({2), for m E 1NI, and

L2({2) := H°(fl) denote the usual Sobolev and Lebesque spaces equipped with the norm

Ilull := (A ID ul2}
I_l<m

For f • L2(fl) and g • L2(F0), Fo C 0{2 closed with positive length, we consider the current

continuity equation, as given in [3]:

Find u • H 1(fl) such that

' div (grad u -k u grad ¢) = f in {2 c _{2,

u--g onFoC0_2,

Ou 0¢
, O--_+U_n =0 onrl=O{2\r0.

(1)

The current is defined by J = grad u + u grad ¢. Here, ¢ • H 1 ({2) is a given bounded function.

To discretize problem (1) we introduce the classical method of changing variables from u to the

socalled Slotboom variable p [3]

p=e _ u.

This results in the following symmetric form of problem (1):

Find p • H 1({2) such that

d iv (e-_grad p) = f

P = X :-----eCg

0___p_p=0
On

in {2 C _t 2,

on F0 C 0f_,

on F1 = 0_2 \ Fo.

(2)

Let {Tk}k>0 be a regular sequence of decompositions of fl into triangles. Denote by hk the

longest side of all triangles T • Tk. The set of edges of Tk is denoted by £k, where E ° are the

boundary edges and CO -- Ek \ £o are all interelement boundaries. Denote by me the midpoint of

an edge e of Ek. Moreover, let P,n, m > 0, be the space of all polynomials of degree not greater

than m. Following [1], we use the lowest order Raviart-Thomas mixed finite element to discretize

(2). Therefor-ewe define the following set of poiynomiai vector§ _ :_ __ : _ :_ _: : ::

nT(T) := {T = (zl, v2) : n = a +13x, T2 = "/ +13y, _, 13,-y•_t}, VT•Tk,

and set

@

Vk := {_" E (L2({2))2 : div 7 • L2(fl), Tn = 0 on _lr • RT(T) VT • Tk},

Wk := {_o • L_(fl) • _0[T • Po(T) VT • Tk}.

2

Then the mixed finite elementdiscretization of (2) is definedas:

Find (Jk, Pk) e Vk × Wk such that .for all (Tk, _vk) E Vk × Wk

(3)

The matrix associated with (3) is not coercive. To avoid this inconvenience we introduce a La-

grange multiplier. We define

Vk :: {T • (L2(i2))2 : tiT • RT(T) VT • Tk},

and for _ • L2(Fo)

Ak,_ := {_t: # • L2(Ek), #[e • Po(e) Ve • £k, _(#-_)ds =0 Ve c r0}.

Instead of (3) we now consider the mixed equilibrium discretization,

Find (Jk, Pk,)_k) • _rk × Wk x Ak,× such that for all (ok, _vk,#k) • Vk x Wk x Ak,0

TeTk TeTk

T_ /T Cflkdiv Jkdx = _ f _kdx,

_ _T .kJknds =0.

(4)

As shown in [3], problem (4) has a unique solution and Jk ----Jk, Pk -- Pk holds. Moreover,

Ak is a good approximation of the solution of (2) at the interelement boundaries [2]. It is pos-

sible to eliminate the unknowns, corresponding to Jk and fik in the resulting system, by static

condensation [3]. This yields a matrix (acting only on the interelement multiplier Ak), which is a

symmetric positive definite matrix and which is an M-matrix if the triangulation is of the weakly

acute type (i.e. no angle > _).

2.2. The Nonconforming Finite Element Formulation

To introduce the nonconforming finite element formulation we needthe following definitions:
Let H° be the L2-projection from L2(gk) onto

Ak := {#k E L2(gk): #kle E Po(e) Ve E gk}

and pO be the L 2-projection from L2(f_) onto

Sk := {vie e L2(fl): VklT e Po(T) VT e Tk},

if lf_i.e. H°(()le = _[,e (ds, Ve e gk and P°(U)IT = IT-_I udx,

The Crouzeix'l_viart finite element space [4] is defined by

VT E Tk.

& := {vk e L2(a): VklT e PI(T) VT e _, vk is continuous at midpoints of edges}.

For (E L 2 (F0) we define

&,¢ :-- {vk e &: vk(me) = H°(()le, e c r0}.

Notice that the standard basis functions of Sk are equal to one at the midpoint of exactly

one edge and vmniSi_ at the midpoints of all other edges. Using the arguments concerning Static

condensation in [5], it is straightforward to prove the following lemma.

1 -

Lemma 2.1.

The solution 3,k of (4) can be written as)_k = H°(wk), where wk is the solution of the follow-

ing nonconforming weak problem

Find wk E Sk,x such that for all vk E Sk,o

(P°(e*))-_ grad wk grad vkdx = E P_k (f) _ 2 r°(e¢)
Teq'k TeT"k

O

Remark 2.2, =

For Wk as in Lemma 2.1. and the solution p of (2) the following error estimate [2] holds:

lip- _kllo _ _'lhkl2(llPll3+ IIJIl_)

with 7 = 3'(e_) independent of p and hk.

4

----- _ :_7 : :c ::::22::: : -272 :El:

<>

The Lagrange multiplier Ak is an approximation of p = e¢ u. In semiconductor simulations

the range of ¢ is very large, so that Ik is not suited for actual computations. Moreover we are

interested in approximating the solution u of (1). Hence we introduce the following change of
variable

#k = (II_(e¢)) -1)_ e A_,(no(_,))-_ x. (6)

Denote the standard basis of Sk by _, e E gk. We define the linear operator Ek : Sk _ Sk by

Ek(_e) : H°(eO)le_ Ve e gk.

For f e L2(fl), Gk(f) • L2(f_) is defined by

1 e_Gk(f) = pO(f)(_ 2 pO(e¢)).

Finally we arrive at the following statement:

Lemma 2.3.

Let ¢ = (n°(e¢))-lX e L2(r0). Then ;zk of (6) can be written as #k = H°(uk), where u;¢ is
the solution of the nonconforming weak problem:

Find ua E Sk,¢ such that for all vk E Sk,o

TETk
(7)

Remark 2.4.

Note that problem (7) is the usual nonconforming Crouzeix-Raviart discretization of the

Laplace equation, if %band f are constant on f_.

O

O

We can use the error estimate of Remark 2.2. to obtain an estimate for the approximation

error between the solution Uk from (7) and the solution u of (1), though the result is rather un-

satisfying. To arrive at an improved error bound, one could use the fact that two Babu_ka-

Brezzi conditions hold [6] for the corresponding bilinear form. The stability and the unique solv-

ability of the discrete problem (7) also follow. In the following we construct a multigrid algo-

rithm for problem (7). Therefore we define the bilinear form ak on Sk by

ak(_k'Vk) :---- E (P2(etb))-I _T gra'd Ek(uk) grad vk dx.
TE Tk

5

3. MULTIGRID METHOD

3.1. Adaptive Mesh-Refinement Techniques

In order to formulate the multigrid algorithm, we need a regular sequence of triangulations

{Tk}k>0. In our refinement process, two objectives are pursued. First, in order to improve ap-

proximation, we should refine the grid locally, where the solution behaves very badly. Second, we

have to construct weakly acute triangulations to guarantee that the corresponding discretization

matrix is an M-matrix. Therefore we define the strategy and rules below. Given a triangulation

we refine its triangles as follows:

(1) The refinement process is started by a suitable error estimator, e.g. based on residuals,

which marks some of the triangles as red.

(2) If a triangle is marked

(i) red, it will be cut into four new ones by joining the midpoints of its edges,

(ii) green, it will be cut into two new triangles by joining the midpoint of the longest edge

to the vertex opposite to this edge, and

(iii) blue, it will be cut into three new triangles by joining the midpoint of its longest edge to

the vertex opposite to this edge and to the midpoint of one of the remaining edges (see

Fig.l)

Figure 1. Red, green and blue refinement of a triangle.

(3) Hanging nodes are avoided using the following rules:

(i) a triangle with three hanging nodes is marked red

(ii) a triangle with two hanging nodes is marked blue, if one of the nodes lies on the longest

edge of the triangle; otherwise it is marked red

(iii) a triangle with one hanging node is marked green, if the node lies on the longest edge of

the triangle; otherwise it is marked blue

Note that rules (ii) and (iii) may introduce new hanging nodes. However, one can prove that

the refinement process obeying the above rules is finite. Moreover, assuming that To has only

isosceles right-angled triangles, then it is guaranteed that all triangulations Tk are weakly acute.

6

3.2. The Prolongation

In order to solveproblem (1), we haveto find the solution Uk of the discrete problem (7).

Since the Crouzeix-Raviart element is nonconforming and Sk-1 _- Sk, we must construct a suit-

able transfer operator between Sk-1 and Sk. In addition, the discretization shows upwind effects

due to the existence of strong convection in part of the domain. This also must be taken into ac-
count.

In [7, 8] a hierarchical basis multigrid method was used to solve a linear system arising from

the convection diffusion equation by an upwind discretization. It was shown that the convergence

of the hierarchical basis multigrid method depends on the strength of the convection term. When

solving the discrete problem (7) with the multigrid algorithm [9], a similar effect can be seen in

the numerical experiments. On the other hand, considering the one dimensional problem, one

sees that a good interpolation has to regard the upwind effect. Therefore we introduce the fol-

lowing weighted L2-projection. Define

(,_,v)k:: _(P,_(_+)l+)-' _ f E_(_)._= V_eS,, .eS, uS_+,. (8)
_'(='2rk T _.Tk + I

TC_

For all u E P2 (T), T • Tk, the quadrature rule

TUd x = IT__[_ u(m_)3
eCOT

is exact, so that (8) can be written as

(u,v)k= _ (P:(e+)l+)-'
"i'e_ TeTk+l

TC'T'

ITI _ Ek(u)(m_) v(m_)
3

ecOT

(9)

for all u • Sk and v • Sk U Sk+l.

Remark 3.1.

Note that if v • Sk holds, (9) reduces to the equation

(_,v)k= _ (PO(e_')l+)-_I_1 _ n_(e+)l_ u(m_)v(m_).
3

'f'eTk ec_

Moreover, if ¢ is constant, we have

(u, v)k = (u, v) V u • Sk, v • Sk u Sk+l,

where (u, v) := f_ uv dx denotes the usual L2-inner product.

O

7

From (9) it follows that the standard basisfunctions of Sk are mutually orthogonal with re-

spect to the inner product (.,-)k. Therefore we can obtain an easily computable prolongation op-

erator k Sk byP__l :Sk-, --*

(Pk_lUk_l,'Vk)k = (Uk-l,Vk)k-1 V Uk-1 e Bk-1, Vk E Sk.

It is straightforward to prove the following lemma:

Lemma 3.2:

Let uk-1 E Sk-1, then:

: = (Ek-luk-1)(me)[:_
i If e e £k° then k P°(e+)IT P°-l(e+)l_" ,

i where T (resp. 2r) is the triangle in irk (resp. _k-1) with e c OT (resp. e C 0'/_).

If e E £o then

= (ITLIpO(¢)ITL+ IT l

([TL [(Ek_lUk-1)(rne)l_Lp__l(e_b)125L "t-ITRI (Ek-luk-1)(me)lf, n_),

: where T n T n (resp. TL,2_R) are the two triangles in Tk (resp. Tk-1) with T L AT n

= e and _L C _L, T n C _R. (see Fig.2)

o

Remark 3.3.

If ¢ of Lemma 3.2 is constant, we have the usual L2-projection Ikk_l as given in [9]. The

coefficients II°(e¢)le k > 0, are also computed during the construction of the stiffness matrix,
pO(e¢)l T' -

hence the interpolation is not very expensive. On the other hand, as shown in [5] the coefficients

P_(e¢)[T' k > O, introduce an upwind effect; i.e. the coefficient corresponding to the downwind

node is equal to zero.

2

=

$

0

TL

i_ NTR ,,,

_N,_m e I 'x ",,

I x
I \

T "

I

Figure 2. Interpolation.

TR

3.3. The Smoother

A suitable smoother for the system (7) is given in [10] by a Gauss-Seidel-iteration with de-

coupling. This smoother is confined to special triangulations and does not allow adaptive grid

refinements. Another candidate for problems with strong convection terms is the ILU-iteration.

Here we restrict ourselves to a variant of the ILU-iteration. The ILU-decomposition of the linear

system Ak, related to problem (7) and the standard basis of the Crouzeix-Raviart finite element

space Sk,o can be written as

Ak = Lk Uk -- Dk,

where Lk, Vk and Dk are given by the sparsity pattern of Ak. Denote by ak = (ae)_eE_ the coeffi-

cient vector of uk = __eeEk O_e E Sk,¢ and by bk the right hand side. Then the ILU-iteration is

given by:

s ° an arbitrary starting vector, w E (0, 1],

_ olik-1 +w(nkVk)-l(bk ,-1= --Akot k), Vi= 1,....

In order to get a good smoothing rate, we must optimize the factor

- ,)112
IIAk(-

as mentioned in [11]. Here _ is the solution of AkOLk = bk. Therefore, by computing the optimal

damping parameter w in every step, our final smoothing algorithm is

9

Algorithm 3.4.

a ° an arbitrary starting vector, r ° = bk - Aka_,

for i ----1,..-,compute:

4-1= (LkUk)-lrik -1 ,

v_ -1 = Ak_-l,

i--1 T i--I

wi-1 _ Vk r k
i--1T i--1 '

V k V k

(2_ = 0/_ -1 + (_)/--l_k-1 ,

r_ = r_ -1 -- Odi-lvik -1,

end.

O

Retook 3.5.

GZ : _ = : L

Algorithm 3.4. can be interpreted as a minimal resi_aI method with ILU-preconditioning.

O

3.4. lViulti_id Algorithm

Now we are in the position to formulate our multigrid algorithm.

Algorithm 3.6. (One MG-iteration at level k)

(1) Pre-smoothing: Given u ° = _¢e& 0a¢_o¢ E Sk,¢. For i = 1,...
rithm 3.4.

, ui compute u_:, using Algo-

(2) Coarse-Grid Correction: Denote by U__ 1 E Sk-l,0 the solution of the coarse grid problem

ak_t(Uk_l,Vk_l)=(Ck(f),II__lVk_l)--ak(u_',I2_lVk_l) Wk-1E Sk-I,O. (*)

If k = 1, set 5k-i = u__l. If k > 1, compute an approximation _k-1 to uk_ 1 by applying
and 0.# = 1 or # = 2 iterations of the algorithm at level k - 1 to problem (.) Starting value

Set
_ui + i ui

k :----uk + Pkk-iUk-l"

=

i
=

(3) Post-smoothing: Apply v2 iterations of Algorithm 3.4. to u_ 1+1.

10

I

Remark 3.7.

So far,there existsno convergence proof for Algorithm 3.6. The standard convergence analy-

sis,as in [9,11],cannot be used here, because the bilinearform ak(.,.)isunsymmetric.

O

4. NUMERICAL RESULTS

In this section we present three numerical examples which demonstrate the behaviour of the

proposed multigrid method. In all experiments we measure the performance of a method by the

arithmetic mean of the convergence rates

_1 'k 'k
P_= _I_o-:dTZd_o,

V r_ r_

where r_ is the defect of the i-th iteration.

The first model problem is taken from the papers of Brezzi, Marini and Pietra [3, 5]. We

consider the domain _/:-- (0, 1) x (0,1) with Neumann boundary

rl := ((x,y) : ((x -- 1) A (y < 0.75)) V ((y = 1) A (x < 0.75))}

and Dirichlet boundary F0 := 0_ \ rl, right hand side f --- 0 and potential ¢ defined as ¢(x, y) :--

¢0(x, y) with
l

0.0 if 0.0_r_<0.8
¢0(x,y):= r-0.8 if 0.8<r<_0.9

0.1 if 0.9 <: r

with r := V/(x - 1) 2 + (y- 1) 2.

On F0 we have g(x, y) --- 0 if x ---- 0 or y ---- 0 and g(x, y) = 1 otherwise. We use the initial

triangulation To as given in Fig.3. and refine every triangulation by marking all triangles as red

(uniform refinement). The numerical solution for I = 10 6 and a locally refined grid is shown in

Fig.4.

,\

1 .TS S

• .ZS al

o.s

•2s

o

Figure 3. Initial triangulation 1. Figure 4. Numerical Solution.

11

We test our multigrid algorithm 3.6. with two pre- and two post-smoothing steps(vl = v2 --

2) and with different values of # (only smoothing : p = 0; V-cycle : # = 1; W-cycle : # = 2)

for problems with varying km_ (kmax - 1,..., 5). The corresponding convergence rates for l =

10 and l --- 106 are given in Tab.1 and Tab.2 respectively. In all experiments we used the same

arbitrary starting vector.

_lTlax

#=0 .672

2

.854

3

.886

4

.9O4 .910

= 1 .032 .103 .159 .208 .253

- 2 .032 .074 .059 .059 .055

Table 1. Convergence rates (l = 10)

klTlaX

p=0

p=l

/z--2

.736

.096

.096

2 3 4 5

•879 .890 .906 .910

.245 .358 .427 .482

.221 .266 .235 .201

Table 2. Convergence rates (1 = 106)

In Tab.3 we show the results for k_ = 5 and with varying p and I = 10 'n.

m

/.,=0

p,=l

p=2

0 1

.9O7 .910

.227 .253

.053 .O55

2 3

.908 .906

.444 .473

.O75 .174

4 5 6

.908 .910 .908

.483 .482 .482

.198 .201 .201

Table 3. Convergence rates (k_ = 5)

In the second experiment we take

f =-2 105
e-¢(x,v)

(cosh(lO0 (r - 0.65))) 2'

with ¢(x,y) = 10 3 (1 + tanh(100 (r - 0.65))) and r = x/(x- 1) 2 + (y- 1) 2. Again we chose

f_ = (0, 1) x (0, 1). The Dirichlet boundary F0 = Of/and g(x, y) = (x + y) e -¢(x'v). The exact

solution is given by

v)= (x + v) e

The numerical solution i-sshown in Fig.7. We used three different coarse grids, as given in

Fig.3, Fig.5 and Fig.6, to show that the Algorithm 3.6. does not depend on the orientation of the

grid. For uniform refinement and k_ = 5 Tab.4 shows the results with varying # (# = 0, 1, 2).
In Tab.4 we also show the results for k_ = 6 and adaptive refinement of the _ (see Fig.S).

12

Figure 5. Initial triangulation 2.

1 .TS .s

0_5

Figure 6. Initial triangulation 3.

\

(
/

\

x

Z

Figure 7. Numerical solution. Figure 8. Adaptive refined grid (k = 4).

grid init. triang. 1 init. tdang. 2 init. triang. 3 loc. ref.

= 0 .900 .903 .891 .905

= 1 .311 .225 .216 .409

= 2 .157 .087 .128 .355

Table 4. Convergence rates

Finally we consider an experiment with a real-world problem. Fig.9 shows the schematic

structure of the doping of a thyristor. With an existing simulation program (ABBPISCES) we

computed the solution u of (1) and the potential ¢ of the coupled stationary semiconductor

equations for a blocking-state (see Fig.ll resp. Fig.12) and an on-state of the thyristor (see

Fig.13 resp. Fig.14). The so computed potential ¢ was substituted into equation (1) and the re-

sulting system was solved with our multigrid algorithm. Fig.10 shows the grid for an adaptive

refinement (k - 5). Finally Tab.5 shows the convergence rates for Algorithm 3.6. with a suitable

number of pre- and post-smoothing steps, with varying # (# = 0, 1,2) and k_ = 7.

Figure 9. Schematic structure of the doping. Figure 10. Adaptive grid (k = 5).

13

20

15

10

30 400

o

Figure 11. Solution (log).

=--: : £ :: :

Figure 12. Potential.

0

Figure 13. Solution (log). Figure 14. Potential.

state blocking on

tt = 0 .843 .828

/_ = 1 (Vl = v2 = 22) .249 .112

/_ -- 2 (vl -- v2 --- 9) .108 .121

Table 5. Convergence rates

5. REFERENCES

1. Raviart, P.-A.; and Thomas, J.M.: A mixed finite element method for second order elliptic

problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathemat-

ics, 606, Springer, Berlin, 1977, pp. 292-315.

2. Arnold, D.N.; and Brezzi, F.: Mixed and nonconforming finite element methods, postpro-

cessing and error estimates, RAIRO M2AN, vol.19, 1985, pp. 7-32.

14

.

.

.

.

.

°

.

10.

Brezzi, F.; Marini, L.D.; and Pietra, P.: Two-dimensional exponential fitting and application

to drift-diffusion models, SIAM J. Numer. Anal., vol.26, 1989, pp. 1342-1355.

Crouzeix, M.; and Raviart, P.A.: Conforming and non-conforming finite element methods for

solving the stationary Stokes equation, RAIRO Anal. NurnAr., vol.7, 1973, pp. 33-76.

Brezzi, F.; Marini, L.D.; and Pietra, P.: Numerical simulation of semiconductor devices,

Comp. Meths. AppI. Mech. Engr., vol.75, 1989, pp. 493-513.

Bachmann, B.: Adaptive Mehrgitterverfahren zur L5sung der station_iren Halbleiterglei-

chungen, Dissertation, Universit/it Ziirich, 1993.

Bank, R.E.; and Benbourenane, M.: A Fourier analysis of the two-level hierarchical basis

multigrid method for convection-diffusion equations, Proceedings of the Fourth International

Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM,

Philadelphia, 1991, pp. 178-184.

Bank, R.E.; and Benbourenane, M.: The hierarchical basis multigrid method for convection-

diffusion equations, Numer. Math., vol.61, 1992, pp. 7-37.

Braess, D.; and Verfiirth, R.: Multi-grid methods for non-conforming finite element methods,

SIAM J. Numer. Anal., vol.27, 1990, pp. 979-986.

Reusken, A.: Multigrid applied to mixed finite element schemes for current continuity equa-

tions, University Eindhoven, RANA 90-13, Nov. 1990.

11. Hackbusch, W.: Multi-Grid Methods and Applications, Springer, Berlin-Heidelberg, 1985.

15

! r

r

___,_ -3_ -_

/ j 7/3

N = 2 675.

FAS Multigrid Calculations of Three

Dimensional Flow

Using Non-staggered Grids

D. Matovid 1, A. Pollard,

H. A. Becker and E. W. Grandmaison

Centre: for Advanced Gas Combustion Technology,

Deparhncnts of Mechanical and Chemical Engineering,

Queen's University, Kingston, Ontario KTL .?,¥6, Canada

Abstract

Grid staggering is a well known remedy for the problem of velocity/

pressure coupling in incompressible flow calculations. Numerous incon-

veniences occur, however, when staggered grids are implemented, partic-

ularly when a general-purpose code, capable of handling irregular three-

dimensional domains, is sought. In several non-staggered grid numerical

procedures proposed in the literature, the velocity/pressure coupling is

achieved by either pressure or velocity (momentum) averaging. This ap-

proach is not convenient for simultaneous (block) solvers that are preferred

when using multigrid methods. A new method is introduced in this pa-

per that is based upon non-staggered grid formulation with a set of virtual

cell face velocities used for pressure/velocity coupling. Instead of pressure

or velocity averaging, a momentum balance at the cell face is used as a

link between the momentum and mass balance constraints. The numeri-

cal stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D) both during

the smoothing and inter-grid transfer, which is a convenient feature when

a block point solver is applied. The results for a lid-driven cavity and a

cube in a lid-driven cavity are presented and compared to staggered grid

calculations using the same multigrid algorithm. The method is shown to

be stable and produce a smooth (wiggle-free) pressure field.

1Ph.D. Student

PRIK,C6DfNG PAGE Ir3LA]"_K Nor}" FILMED

17

1 Introduction

Multigrid methods are used in a number of applications in fluid dynamics,

usually by applying the Full Approximation Scheme [1]. Incompressible flow

calculations usually employ a staggered grid because of its strong coupling

between the pressure and the velocity field (e.g. [2]. For complex geometries,

however, as well as for calculations in non-orthogonal coordinates, the use

of a staggered grid is a serious obstacle to efficient and-well structured

computer coding [3]. Additional complexities a ris e when ablock-solver is

used; for example, variables cannot b e easily _grouped into cell-bound blocks
due to different node count. Some authors resort to asymmetric nodal

clusters [5] while others update a symmetric block of variables around the

cell centre node thereby updating face velocities twice in each relaxation

sweep [5, 6]. Various levels of decoupled relaxation are also common. These

include distributive relaxation, where all momentum equations are solved

together and the pressure field is solved separately [1, 7], and sequential

schemes that update variables :throughout the flow field one by one [8, 9].

Some comparative studies 0fblock versus sequential relaxation give no clear

preference [10, 11]. There is a greater consensus that grid staggering is a

necessary burden? particularly in the context of multigrid methods ([12, 13,

14, 15, 16] and even [1]). Comparis0n=studies of staggered a_dnon-staggered

methods are sometimes conflicting in their assessment of the accuracy and

stability of any given method. While some authors demonstrate that non-

staggered methods match the staggered ones using both criteria ([13, 16,

17]), others question it ([18]). Despite this, the majority of finite volume

incompressible calculations use staggered grids. The main reason may be

that existing non-staggered grids increase rather than lessen the complexity

of the staggered grid calculations. For example, the method of Rhie and

Chow [19] (adopted by [13, 14, 15]) requires that both the nodal and

cell face velocities are stored. Moreover, in a multigrid context, both the

nodal and the face veloc_ie s need to berestricted-_8], requiring even more

computational work. Also, the computational cluster extends beyond either

9 or 27 point stencil in two- or three-dimensional formulations respectively

for the first order discretisation and even more if the higher order methods

are used.

The considerations mentioned above motivated the present contribution

for a method suitable for block solvers on an irregular three-dimensional

domain using a non-staggered grid.

18

In this paper a brief description of the multigrid procedure basedon
a new non-staggeredmethod is given in section 2 and the multigrid
implementation in section 3; the test casesand results are presentedin
section 4, followed by the discussionsection where relative merits of the
method are assessed.

2 The new non-staggered method

A transport equation for a general set of transported variables u in the

volume F_ bounded by a boundary S can be expressed in an integral form
suitable for finite volume formulation

Opud_ - =+/s[puui Fu(_)]n/dS' Fu, (1)

where p isthe density,ui isthe velocitycomponent in the xi directionand

ni isthe component ofunit normal to the boundary S. When (I) isapplied

to the momentum balance of a viscous incompressible fluid,the set u isa

velocityvectoru = {uj>j = i,...>d) (d being the problem dimension), with

the corresponding diffusioncoefficientP = # and the source terms

in the absence of external volume forces. The extension to other trans-

portable properties (such as enthalpy, mass fraction, etc.) is straightforward

by augmenting the vector u to include new variables and defining appropri-

ate source terms and the diffusion coefficients. In the following presentation

a three-dimensional implementation wilYbe used.

The momentum equations are discretised using the hybrid (central/up-

wind) difference scheme [20] although higher order schemes can be

employed 1. The pressure field is resolved by means of mass conservation for

the control volume around the node in a symmetric block manner as used

by Vanka [5] for the staggered grid, although the extension to the line block

around the node in a symmetric block manner as used by Vanka [5] for
the staggered grid, although the extension to the line block formulation is

1For a multigrid implementation Of a Second ordei Upwind scheme on a staggered grid

see e.g. [21].

19

straightforward. The estimation of the facevelocitiesthat are substituted
into the mass conservationequation is obtained by discretizing the mo-
mentum equation overa half-length volume around eachcell face, directly
involving the nodal pressureand velocities, while the lateral velocities are
obtained by averagingvaluesfrom the nearby nodes (seeFig. 1). More
details on the coefficientgenerationaregivenin [22].

The principle of discretizing the face velocity using a half-size cell is
applied also by Schneider and Raw [3], although in their method the
coefficientsof the facevelocity are treated implicitly by incorporating them
into the nodal velocity cpefficientmatrix. To ensure_o_itiv_ definitenessof
the nodal velocitiescoefficientmatrix, Schneiderand Raw had to truncate
the momentum equation applied to the face velocities [3, 16]. In the
present method, the face velocities are explicitly expressedin terms of
the surrounding nodal values and used in the continuity equation for
the pressurecorrection calculation. The implication of this step is that
the family of face velocities satisfiesboth the momentum and the mass
conservationexactly at the positions where the convection_velocitiesin
a general transport equation are required. On the other hand, as an
averageof the (tentative) nodal velocities they arereadily availablewithout
requirementfor a permanentstorage.

The boundaries of the flow field are coincident with the cell faces,
enabling the definition of a set of boundary nodes there. This practice
ensuresconsistencybetweenthe globalmassbalanceof thewholecalculation
domain and the local mass balance of each cell, but calls for special
treatment if Neumann boundary conditions are to be used. If the zero-
gradient condition for the normal velocity is discretisedin a usualway

o(uini) _ (ini)b -
O(Xir_i) (Xini)b -- (xini)in n'

(3)

where subscripts b and inn denote boundary and the first inner node,

respectively, the flow rate through the boundary will be linked to the

velocity that does not belong to the mass preserving field, resulting in

poor overall mass conservation. The correct way to implement Neumann

boundary condition in this case is to use the face velocity. This way, the

local and global mass balance become fully compatible. There is no need

for any special treatment of the Dirichlet boundary conditions where the

face velocities coincide with the boundary and are assumed known.

2O

i

3 The multi-grid implementation

In the multigrid context, the nonlinear equation (1) can be expressed as

_:(u)-- F (4)

by grouping all terms that will result in a coefficient matrix (within a

Newton iteration cycle) into the operator /: and the remainder into the

source term F as in [13, 23]. A more common practice of expressing Eqn. (4)

as homogeneous (by absorbing F into _(u)) [1, 24] is found by the present

authors to be somewhat confusing, especially when defining residual transfer

to the coarse grid.

The discretised (sparse, positive definite) Eqn. 4 for the grid I is linearised

by a Newton iteration [24]

Llu I = F l (5)

and relaxed by a block Gauss-Seidel method.

The updates of the variable set

u'= a(diag(L))-lR / (s)

are expressed in terms of the residual l:t l ---- F l - Llu l, the inverse of the

coefficient matrix diagonal (diag(L)) -1 and the underrelaxation coefficient

(_. Variables at the node i,j, k are then updated by u i j,k : Ui,4,k "[- uli,j,k •

Restriction is accomplished by grouping a cluster o_ eight ce_[ls into one.

This leads to the following operator

1

¢I,J,K : _(¢i,j,k Jr ¢i+l,j,k "b ¢i,j-q-l,k q" ¢i,j,k..kl"k

¢i+ l,j+ l,k --t-q_i,j+ l,k + l --b_i+ l,j,k+ l --bqbi+ l,j+ l,k+ l), (7)

where I - 2i - 2,... The same operator is applied both to variable and

residual restriction. After both the variables and residuals are transferred

to the next coarser grid (l - 1), Eqn. (5) is approximated as

Ll_l(ul_l) __ _/-1, (s)

where

_1-1 = F/-1 _ (F/0-1_ L/-lu_-I)-t- 7"_I-1R/ (9)

21

is the equivalent source term on the coarse grid. The restriction at

Neumann boundaries is carried out using a divided form of the boundary

conditions [1]. For the velocity component perpendicular to the boundary,

an additional correction is made to preserve the mass flow rate through the

boundary.

Prolongation is carried out by tri-linear interpolation using a seven point

stencil, shown here for one cell and with injection only:

¢i,j,k = _(3¢I,J,K 4- ¢!_!,j,K _ _I,J--1,K 4- ¢i,J,K-1) (10)

with i = (I + 2)/2,... The injection upon the first visit to the fine grid

(FMG cycling is assumed) and the fine grid correction are done as

lz = or = Uold+ - (11)Ufirst

4 Test cases

The non-staggered method presented in this paper is compared with

the staggered three-dimensional calculations employing the block symmetric

Gauss-Seidel algorithm of Vanka [5]. For both methods the coding and data

structures are of the same style.

The flow in a three-dimensional cavity with a moving top is used as a

first test case. The residual norm history is shown in Fig. 2. The rate of

convergence obtained when calculating on a Staggered grid is comparable

with the results of Vanka [10] where 12 work units (w.u.) were necessary for

a two Orders of magnii-ude _residual reduction. In our calculationS_i4 w.u.

was necessary for the staggered grid calculation and 18 w.u. for the non-

staggered calculations. 1 However, the change in slope of the non-staggered

residual may indicate that the full potential of multigrid acceleration has

yet to be achieved.

In a second test case, a cube is inserted in a cavity (Fig. 3), forcing the

flow to negotiate this asymmetric three-dimensional obstacle, partly by the

velocity magnitude change, partly by flow separation. It is believed that

this flow geometry serves as a good test of the pressure/velocity coupling

1Or 23 w.u. for the same residual decrease; however, this is more arbitrary, because

of the much lower initial residual at the finest grid.

22

because the major force behind the flow adjustment is the pressure field.

The residual history, (Fig. 4) indicates very similar convergence rates for

the staggered and non-staggered calculations. The resulting flow field in a

symmetry plane (Fig. 5) indicates well resolved separation bubbles around
the cube corners.

5 Discussion and conclusions

The new method of incompressible flow calculation using non-staggered

grids and its multigrid implementation are examined for suitability in a

complex flow field geometry. The presence of two sets of velocity values,

both of which satisfy the (discrete form of the) governing equations increases

the overall level of accuracy for a given grid size, although this remains to
be quantified.

In the numerical experiments performed so far the method proved to be

stable, without any tendency to produce an oscillating pressure field, which

is a common feature of some non-staggered methods [18]. The method

permits discretization on a trivially coarse grid (with a single node in the

interior), which is very convenient in a FAS multigrid implementation,

because it allows the coarse grid to contain the lowest number of nodes.

Thus significantly coarser grids can be used in complex geometries. For

example, in the case of a cube in a cavity (see the previous section) the
coarsest grid (6x6x6 nodes) has only one control volume located between

the cube and the cavity wall at 0ne:side. If the calculation method required

two nodes at minimum, the overall node count at the coarse grid would

increase eight times, thereby substantially increasing the work needed to

obtain exact solution at the coarsest grid.

Various tests performed so far always produced smooth solutions both

in velocity and pressure, which indicate a high ellipticity measure of the

proposed method. The analytical evaluation of the ellipticity measure

remains to be carried out (following e.g. [25, 16]).

The amount of computational work of the proposed method is slightly

larger that of the Rhie and Chow [19] method. It is comparable to

the work in the SCGS method of Vanka, requiring the same amount of

work to calculate face velocities and pressure coefficients and, in addition,

the calculation of the nodal velocity coefficients, i.e. approximately 25%

increase in two-dimensional and 14% in three-dimensional calculations. This

23

overheadexists only for the simplest flow problem becauseany additional
variable that is solvedpermits nodal velocity coefficientsto be reused(with
proper scalingof the diffusion part).

References

[1] A. Brandt. Guide to multigrid development. In :'tlt_ltig_'id Methods:

Proceedings, KSln-Porz, i981, pages 220-312. Springer-Verlag, Berlin,

1982.
. ---- -

[2 B. Favini and G. Guj. MG techniques for st_aggered differences. In
Holstein D.J., Paddon H., editor, Multigrid Method.¢ for [ntegral and

Differential Equations, pages 253-262, Oxford, 1985. Clarendon Press.

[3] G.E. Schneider. A novel colloccated finite difference procedure for the
numerical computation of fluid flow. In P roceeding._ of 4thAIAA/ASME

Joint Thermophysics and Heat Transfer Conference. AIAA-86-1330,

1986. _

[4] B. R. Hutchinson, P. F. Galpin, and G. D. Raithby. Application
of additive correction multigrid to the coupled fluid flow equations.

Numerical Heat Transfer, 13:133-147, 1988.

[5]

[6]

[7]

S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations

in primitive variables. Journal of Computational Physic.% 65:138-158,

1986. =:

M. C. Thompson and J. H. Ferziger. An adaptive multigrid solution

technique for the incompressible navier-stokes equations. Journal of

Computational Physics, 83:94-121, 1989.

L. Fuchs and H.-S. Zhao. Solution of three-dimensional viscous incom-

pressible flows by a multi-grid method. International Journal for Nu-
merical M_thods in Fluids, 4:539-555, 1984.

[81M. Hortmann, M. Peric, and G. Scheuerer. Finite volume multigrid

prediction of laminar natural convection: Bench-mark solutions. Journal

for :_tm_ric_zI Methods in Fluids, 11:189-207, 1990.

24

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. A. Rubini, H. A. Becket, E. W. Grandmaison, A. Pollard, A. Sobiesiak,

and C. Thurgood. Multi-grid acceleration of three dimensional turbulent

variable density flows. Numerical Heat Transfir, B: Fundamentals,

pages 163-177, 1992.

S. P. Vanka. Fast numerical computation of viscous flow in a cube.

Numerical Heat Transfer, Part B: Fundam_ntal._, 20:255-261, 1991.

P. H. Gaskell, A. K. C. Lau, and N. G. Wright. Comparison of two

solution strategies for use with higher-order discretization schemes in

fluid flow simulation. International Journal for Numerical Methods in

Fluids, 8:1203-1215, 1988.

C. Hirsch. Numerical Computation of b_ternal and Eternal Flows,

volume 1: Fundamentals of Numerical Discretization. John Wiley &

Sons, New York, 1988.

M. Peri6, R. Kessler, and G. Scheuerer. Comparison of finite-volume

numerical methods with staggered and collocated grids. Computers and

Fluids, 16:389-403, 1988.

S. Majumdar. Role of underrelaxation in momentum interpolation for

calculation of flow with nonstaggered grids. Numerical Heat Transfer,

13:125-132, 1988.

P. Coelho, J. C. F. Pereira, and M. G. Carvalho. Calculation of laminar

recirculating flows using a local non-staggered grid refinement system.

International Journal for Numerical Methods in Fluids, 12:535-557,
1991.

W. W. Armfield. Finite difference solutions of the navier-stokes equa-

tions on staggered and non-staggered grids. Computers and Fluids,

20(1):1-17, 1991.

T. M. Shih and A. L. Ren. Primitive-variable formulations using

nonstaggered grids. Numerical Heat Tra_Tsfer, 7:413-428, 1984.

25

[18] T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering

on numerical schemes, h_l_ rn a rio i_al Jou rl_a I for :\:_t m e rical Methods in

Fluids, 9:413-428, 1989.

[19] C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow

past an isolated airfoil with trailing edge separation. AIAA-82-0998,

1982.
=

[20] D. B. spalding: A novel finite-difference formulation for differential

expressions involving both first and second derivatives. International

Journal of Numerical 3[_tl_od._ i_ Ellgineering, 4:551-559, 1972.

[21]

[22]

[23]

[24]

[25]

D. Xiao, H. A. Becker, E. W. Grandmaison, and A. Pollard. The

calculation of a jet in a crossflow using embedded/overlapping grid

techniques, multi-grid acceleration and a modified QUICK differencing
scheme. Submitted to: Ii_ternational Journal of Computational Fluid

Dynamics, 1993.

D. Matovic and A. Pollard. Evaluation of a new block non-staggered

calculation method for an incompressible flow and its mUltigrid acceler-

ati0n: _bmitted for publication: _

W. Shyy and C-S. Sun. Development of a pressure-correction/staggered-

grid based multigrid solver for incompressible recirculating flows. Com-

puters and Fluids, 22:51-76, 1993.

W. Hackbush. Multi-Grid Methods and Applications. Springer-Verlag,

Berlin, 1985.

A. Brandt and N. Dinar. Multigrid solutions to elliptic flow problems.

In Numerical M_tl_ods for P_rli,l Differential Equations, pages 53-147.

Academic Press, New York, 1979.

i

iV

/7

I--i-- _, -'- !--,_1 i M

I i Ii ' I

S t

, " "° fl • • . / _'

!t ,::_]1/

S"

Figure 1: The layout of a non-staggered grid.
require storage.

Only the nodal variables

3D Cavity Flow
5 grids: 2x2x2 ... 32x32x32

m

¢g

1.O00E+ O0

1.000E-01

1.000E-02

1.O00E-03

1.000E-04'
0 5 i0 15 20 25 30 35 40 45 50

Work units

Staggered grid + Non-Staggered grid

Fig_re 2: Mass residual history for a lid-driven cavity flow• Re = 400.

27

Figure 3: The grid for a flow around the cube in a lid-driven cavity.

Flow around the cube in a cavity

4 grids: 6x6x6 ... 48x48x48

.N
t_

1.000E+00

1.000E-01

1.000E-02

1.000E-03

1.000E-04

1.000E-05
0 5 I0 15 20 25 30 35 40 45 50

Work units

Staggered grid + Non-Staggered grid

Figure 4: Mass residual history for the flow around the cube in a lid-driven
cavity. Cavity Re=400.

28

Moving lid

Fig_trc 5: Flow around a cube in a lid-driven cavity: particle traces in a
symmetry plane.

29

.Z - T L_ H

T _

. L _

T_

i

|

i

i=

m

[") ?!

MULTIGRID AND CYCLIC REDUCTION APPLIED TO THE HELMHOLTZ E QU .ATION

N94-2S676
Kenneth Brackenridge

Oxford University Computing Laboratory

Oxford OX1 3QD, U.K.

ABSTRACT

We consider the Helmholtz equation with a discontinuous complex parameter and

inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct

method of cyclic reduction is employed to facilitate the design of improved multigrid components,

resulting in the method of CR-MG. We demonstrate the improved convergence properties of this
method.

1 INTRODUCTION

Microwave heating of foods has revolutionised the food processing industry. Effective and

efficient microwave heating depends very much on a detailed knowledge and understanding of the

dielectric properties of the food to be processed. This need has given rise to extensive research into

the dielectric properties of materials; see, for example, Tinga and Nelson [1].

Microwave heating can be compared to heating by alternating current. The electric field of

alternating current changes direction approximately 100 times each second, whereas the microwave

field changes direction approximately 5 billion times each second. The heating effect is

accomplished by energy transfer to dipoles, most commonly water. Most foods contain between 50

and 90 percent water. By attempting to follow the very rapidly changing microwave electric field,

the molecular vibrations of the dipoles are strengthened, thus increasing the temperature of the
water and hence the food.

The scalar potential ¢ associated with the microwave field satisfies the wave equation

02¢
V2¢ - e/_-g_ =0, (1)

which is derived from Maxwell's equations of electromagnetics. The parameter e describes the

permittivity of the medium and the parameter p the permeability. However, the radiation field in

a microwave oven varies harmonically in time, and so we look for a solution of equation (1) in the
form

¢(x, t) = u(x),

IM_iC.,tD.t'NG PAGE BLANK NOT FILMED jPAGE,_. 0 INTENTiOI:_ALLYBLANK"

31

/
waveguide

Figure 1: A two-dimensional model of a microwave oven.

where u is a time-independent scalar potential function and w is the frequency of the microwave

radiation. By substituting this expression into equation (1), we see that u satisfies the Helmholtz

equation
V2u + 6u = O,

where 6 := ettw 2. In general, e and tt are complex numbers, with real parts related to a material's

ability to store electrical and magnetic energy respectively, and imaginary parts related to a

material's ability to dissipate electrical and magnetic energy respectively. However, the

permeability of biological materials is close to that of free space, i.e. # _ it0 = 4rr × 10 -_ Hm -1.

Hence, since most domestic microwave ovens operate at a frequency of 2450 MHz, we can calculate

6 for a:ny given permittivity ¢.

The oven is represented schematically (in two dimensions) by the rectangular domain depicted

in Fig. 1. Region 1 corresponds to free space and so e = e0 = _ × 10 -9 Fm -1 and 6 is a real

constant in this region. Region 2 corresponds to the heated material and so 6 is a complex constant

in this region. Energy is fed into the system by a magnetron via the waveguide. Hence, in this

paper, we consider the solution of the Helmholtz equation with a discontinuous complex parameter

and inhomogeneous Dirichlet boundary conditions in a rectangular domain.

We close this section with a plan of the paper. In section 2 we describe the mathematical

problem and discuss the smoothing abilities of two multigrid smoothers. In section 3 we describe

the technique of approximate cyclic reduction and show how this can be used to design improved

multigrid components. Numerical results are presented in section 4 and some concluding remarks

are made in section 5.

2 MATHEMATICAL PROBLEM

Consider the complex two-dimensional Dirichlet boundary value problem

V2u+(Su=0 in £/=flxU_/2

s.t. u=g on Of'/,

with data

5 = _' 5a in subdomain fll
52 in subdomain f12 't

where fll and f12 are rectangular subdomains of fl (as in Fig. 1).

(2a)

(2b)

Operator Definitions

Before attempting to solve this problem by the multigrid method, we need to carefully consider

the definitions of the dlscretisatlon, restriction and prolongation operators. In [2], De Zeeuw

considers the solution of general linear second order elliptic partial differential equations over

similar domains. He notes that the rate of convergence of standard multigrid methods often

deteriorates when the coefficients in the differential equation are discontinuous; he proposes

matrix-dependent grid transfer operators to overcome these difficulties. However, in our case, the

discontinuity occurs only in the coefficient of u (viz. 6), and not of Vu. Hence we proceed in the

following way to define operator P = T'(6) in the domain fi, where _ can be taken to represent the

discretisation, restriction or prolongation operator. Firstly, if 6 takes value 6i in subdomain _i

(i = 1,2), then we set the value of 6 on the interior boundary between _1 and f12 to

1 62) Secondly, 7_ is defined piecewise by6a := 3(61 + •

{ 'P(_I) in f_l
T' = T'(_2) in _2 (3)

?(63) on Otis

In practice, this definition of 7_, for discontinuous 6, does not seem to impair the convergence of

the multigrid algorithm for relevant values of _.

Equivalent System of Real Equations

Consider the discrete analogue of problem (2). Suppose 6 = a + ifl C C and g E IR. Using a

central difference discretisation on a mesh of n × n intervals, the matrix of the discrete system

Au = f is represented in stencil notation by

1]1 p 1 ,
1

(4)

where A C C(n-x)2× C (n-1)2, h := ! and p := 6h 2 - 4 = (ah 2 - 4) + iflh 2. Hence, while most linear

systems which arise in practice have real coefficient matrices, the discretisation of this problem

yields a complex linear system. Further applications which give rise to complex linear systems

include discretisations of the time-dependent SchrSdinger equation, inverse scattering problems and

underwater acoustics.

A popular approach for solving complex linear systems is to solve the equivalent real linear

systems for the real and imaginary parts of u. Itowever, the following remarks, due to Freund [3],

cast doubt on this approach. Suppose that A is a general complex m x m matrix. By taking real

and imaginary parts, we can rewrite the complex system as the real linear 2m x 2m system

ImA)(u)B fi = Zrn A -Tte A -Yrn u = Zm f "

33

It can then be shownthat B has eigenspectrum

= {AeelA =•

which means that a(B) i s symmetric with respect to the real and imaginary axes and hence the

eigenvalues always embrace the origin. Now if A i s complex symmetric (as is the case with (4)),

then B is a real symmetric matrix with real eigenvalues symmetricallydistributed about the origin,

i.e. B is symmetric indefinite. Therefore the equivalent real system is often harder to solve than the

i ::original complex one.

Smoothing Analysis

Multigrid smoothing methods are usually basic iterative methods, the properties of which are

well understood. As the name suggests, the function of a multigrid smoothing method is to reduce

the rough (high frequency) components of the error as efficiently as possible. This is basically a

local task and so the smoothing efficiency of a method can be analysed by local Fourier mode

analysis [4], neglecting interactions with boundaries. The smooth (low frequency) error components

are reduced on the coarser grids. There is a natural distinction between high and low frequencies

depending on the type of grid coarsening chosen. Essentially, the low frequencies are those which

are visible on the coarser grids. In principle, smoothing methods need not be convergent (see [5],

chpt 7), although in practice most are.

Consider the discrete analogue of problem (1), Au = f, defined on a mesh of n x n intervals.

Basic iterative methods are based on a matrix splitting A = M - N and are defined by

Mu (re+l) = Nu (m) + f.

The algebraic error arising from the iterative solution of this system of equations is defined by

e (m) := u (m) - u and satisfies the equation Me (m+0 = Ne (m). Denoting the stencils of M and N

by [/1I] and IN] respectively, this equation can be rewritten in stencil form as [M] e! m+l)k -- [N] _-jk •

Now if we define e (m+q := A e (m) and note that the algebraic error can be represented as a

combination of local Fourier modes

e.jo+k,) (o ¢) e o := m): - _ _ -= , , , ,, -7+1 <P,q<7},

then by substituting this into the stencil representation of the error recurrence we define the error

amplification factor

[N] e i(jO+k¢)
A(0,¢) :=

[M] d(J°+k¢)"

The error amplification factor is the factor by which the amplitude of the (0, ¢) Fourier mode is

multiplied as a result of a single smoothing iteration. Now in the case of standard grid coarsening,

the sets of smooth and rough frequencies are defined by

o,:=e n

0, := 0\@,.

34

1,0

0.76.

flh 2 u

O25

O0

0.0

PGS
1.0

_h _ o.,-_

025-

.... , , , O0

02'5 05 O.'h3 1.0 0,0

cth _

KACZ

J/#
/

i

025 0.5 _TS t.O

ah 2

Figure 2: Fourier smoothing factors pD for PGS and KACZ.

Hence the Fourier smoothing factor, which is the worst factor by which all high frequency error

components are reduced per iteration, is defined by

p:= max IA(0,¢)1-
(0,¢)Eo_

Note however that this definition of the smoothing factor is only valid for boundary conditions of

harmonic type. The influence of Dirichlet boundary conditions can be taken into account

heuristically (see [6] and [7], for example) in the following way. The error at the boundary is

always zero and so we define a new set of rough frequencies as

@_ := Or 71 {(0, ¢) E O: 0 5¢ 0 and/or ¢ 7_ 0}.

The corresponding Fourier smoothing factor is defined by

:= max I (O, ¢)l.
(o,¢)_og

This is a mesh-dependent definition. A mesh-independent definition, introduced by Brandt [4], is

obtained by replacing the discrete set O with a continuous analogue, but this is more difficult to

compute numerically and gives less realistic results in cases where the type of boundary condition
has much influence.

There are many possibilities for the choice of smoothing method (see [7], for example), but for

brevity we consider only two, point Gaug-Seidel iteration (PGS) and Kaczmarz iteration (KACZ).

The latter of these two methods, dating back to 1937 [8], is considered here because, when applied

to the complex linear system Au = f, the method converges for all distributions a(A)-of elgenvalues

of A. The reason for this is that solving the system Au = f using KACZ is equivalent to solving the

system AAHv = f with u = AHv (i.e. postconditioning) using PGS, and the matrix AA tt is

Hermitian positive definite, thus guaranteeing convergence. Applying the smoothing analysis to

stencil (4), the error amplification factors for PGS and KACZ are

e i° + e i¢
/_PGS --

P + e -io + e-i¢,

3S

(e i° + ei¢)(e i° + e i¢ + P + P) + 2e_(-°+_)
,_KACZ = --

4 + p_ + (e -;° + e-;¢)(e -/° + e -i_ + P + P) + 2e;(e-¢) '

for some p (o_h 2 4) + i/3h = and (0 ¢) E O. Fig. 2 displays contour plots of pDg s and D= -- _ PKACZ

plotted as functions of crh 2 and/3h 2. For fixe_d values of h and o_= 7"_ 6, as/3 = 2"m 6 increases,

ppDcs increases and pDAc z decreases. Hence we might expect the multlgrid convergence rate to

improve slowly with a KACZ smoother and deteriorate more rapidly with a PGS smoother as/3

increases. This is borne out in practice. Finally, as a rule of thumb, a good smoothing method has

a smoothing factor pD < {. In this sense, neither of the two methods considered here is a good

smoothing method for problem (2).

3 CYCLIC REDUCTION AND MULTIGRID

Cyclic reduction (CR) is a direct method of solution for tridiagonal and block-tridiagonal

systems of linear algebraic equations [9], [10]. For tridiagonal systems which represent

approximations to 1-D second order ordinary differential equations, CR is as efficient as muitlgrid

(MG). For problems in higher dimensions CR becomest-oo computationaliy expensive_duet_6 _ii_n

within the blocks. Itowever, the design of MG methods in higher dimensions can be facilitated by

drawing comparisons between MG and CR (sec Shaw [11]).

Approximate Cyclic Reduction

Consider the system of equations Lu = f. If v is an approximation to the true solution u, then

we define the error vector as e := u - V and the residual vector as r := f - Lv = Le. Then

assuming that the error vector e is sufficiently smooth (a condition normally guaranteed by a few

applications of a smoother in a MG algorithm), the fill-in can be minimised by making accurate

Taylor expansion approximations of the outlying errors. This method is known as approximate

cyclic reduction (ACR) [12].

Now consider a two-grid method applied to a two-dimensional Toeplitz system. Suppose the two

grids have mesh sizes h and H = 2h and the fine grid matrix has stencil

Lh,-_ bab ,

b

where a and b are scalars. Given an initial approximation v to u, we want to solve the equation

Lhe r for e to obtain an improved approximation v + e. The method of ACR approaches this

problem as follows: :: := :: : :

Eliminate the outlying errors in the stencil using neighbouring equations to give

b_

2b 2

Lh ~ b2 0

2b2

0 2b2

4b 2 - a 2 0 b2

0 2b 2

b2

36

This first step of CR hasdestroyedthe band structure of the original five-point operator. Further

steps of CR would introduce more fill-in, resulting in a relatively inefficient process. Instead,

assuming the errors are sufficiently smooth, approximate the errors at the NW, NE, SW and SE

positions (in compass point notation) using accurate Taylor series expansions. This defines the

ACR-modified coarse grid matrix, which has stencil

LH ,.., o"

2b 2

0

2b 2 0 8b 2-a 2 0 2b _

0

2b 2

where o is an a,rbitrary scaling parameter. From the above information, the definition of restriction

from the fine grid to the coarse grid can also be gleaned. The ACR-modified restriction operator
has stencil

~ b -a b (5)
b

For theoretical considerations it is very convenient to choose restriction and prolongation operators

which satisfy the relation PHh = R H', where R H* is the adjoint operator of R H with respect to a

suitably defined scalar product. However, the adjoint of the five-point restriction operator (5) is not

a reasonable prolongation (see [13], p. 78). Alternative definitions of the prolongation operator are

discussed in the following subsection.

ACR and the Helmholtz Equation

Consider a two-grid method, with mesh sizes h and H = 2h, applied to the fine grid Helmholtz

differential operator _hU := V2u + 6u. Using a central difference discretisation on a mesh of n × n

intervals, the fine grid matrix has stencil

111]Lh"_-/-_ 1 p 1
I

h2whereh:=!_ andp:=6h 2-4. Hencea=_ andb= . Now if we choosea=T,thenthe

ACR-modified coarse grid matrix and restriction operator have stencils

1
LH _ --

(2h)

1

0

1 0 4-12 0 1_P
0

1

1[1

1 -p

1

37

Thereforethe analogouscoarsegrid Helmholtz differential operator is definedas
,H u := V2U + ¢(1 -- 6H2 "--gT-)u, i.e. ACR suggests solving the Helmholtz equation with a different value

of 6 on the coarse grid in order to stabilise the MG process. For positive real values of _ for which

Lh is indefinite, this corresponds to solving the Helmholtz equation with a smaller value of * on the

coarse grid, thus reducing the indefiniteness of LH. There are various ways to define the

prolongation operator. Possibilities include seven-point and nine-point prolongation [14]. However,

a more effective definition of the prolongation operator for this interface problem is

x[,,p 4]-4p 3p 2 --4p ,
PHa "" 2P2 4 --4p 4

which is derived from the tensor product of the one-dimensional ACR-modified prolongation

operator. To extend these ideas to an m-grid process, where hi is the mesh size of grid f_i and

hi+l = 2hi, we proceed as follows.

Define 81 := 8 and _k := &__(1 8,_,h_) :-- 6k-1 ck (2 < k < m) and pk := 8kh_, - 4. Then the
32 -- --

differential operator on grid f_k is defined as

/:kU " V2u + _ku,

for 1 < k _ m, provided a = -_. Therefore, the ACR-modlfied definitions of the matrix of the

discrete system on grid f_k and the restriction and prolongation operators have stencils

Lk,-., h--_k 1 Pk 1 ,
1

1
R_+_ _., _1 1 -pk

8 1

4 -4pk
1

-- -4pk 3p
P:+l 2p_ 4 -4pk 4]--4pk

4

respectively. We call this ACR-modified multigrid process CR-MGI Note that the CR-MG

restriction operator is similar to the operator naturally suggested by the principle of total reduction

(see [15] and [16], for example). Further, for Laplace's equation (i.e. 6 = 0), Pk = --4 and the

CR-MG restriction operator corresponds to half weighting.

4 NUMERICAL RESULTS

38

Consider the complex two-dimensional Dirichlet boundary value problem

V2u+_u=0 in f_=fllUf_2 : unit square

s.t. u=g on Off,

with data

3 5

5 = 30+10i in fl2:g<x,y<g

1 in fll :__2 '

sin(4y- 3 3 s
_)a- on x=0,g<y<g

g = 0 elsewhere on OFt

For convenience, we consider a domain ft consisting of two concentric squares. The value of 5 in Ft_

is a typical value calculated from the data in [1]. In the following experiment we assess the

efficiency of the CR-MG algorithm, as described in the preceding section, and compare it with

standard MG using full weighting restriction and nine-point prolongation.

The problem is discretised piecewise according to (3) and (4), using central differences on a

65 x 65 grid. A four-grid method is employed, with standard grid coarsening. This ensures good

resolution of the inner subdomain f_2 on the coarsest grid. The multigrid schedule used is the

V-cycle with two pre-smoothing and two post-smoothing iterations, and LU decomposition with

partial pivoting is used to solve the defect equation exactly on the coarsest grid. The initial

estimate is taken to be the zero vector and convergence is measured by loga0][r]]2, where r is the
residual vector and I1.[1_ is the usual Euclidean norm.

With convergence set to a tolerance of

l°g,o II 'll < -9,

the convergence times of MG and CR-MG with PGS and KACZ smoothers were measured and the

results are displayed in Table 1. All convergence times were measured in seconds on a Sun SPARC-

Table 1: CPU Convergence Times

time(s) PGS[KACZ

MG 22.8 I

191.6

CR-MG 18.5 155.9

workstation. We immediately notice that both MG and CR-MG converge much more rapidly with

a PGS smoother than with a KACZ smoother. This is not unexpected, considering the smoothing

properties of these two iterative methods. Further, KACZ is a more computationally intensive

smoother than PGS, having a 13-point stencil as compared to the 5-point stencil of PGS.

However, most importantly, we find that with both smoothers the rate of convergence of

CR-MG is significantly faster than that of MG. In fact, with both smoothers CR-MG provides a

19 percent saving in CPU time over MG. This is a significant saving, especially for larger problems.

The rates of convergence of MG and CR-MG with a PGS smoother are compared graphically in

Fig. 3. Both plots are approximately straight lines, a consequence of the grid-independent

convergence of the multigrid method.

39

f

log1011 112

,,o:a,,oo,., . 0 ,0

0.0 : % _1 _%1 . I I I I I I I e I J J

-zs: """ WIG

-s. CR-MG

-?.$ %

%
%

-10.0

Figure 3: Convergence of MG and CR-MG with a PGS smoother.

5 CONCLUDING REMARKS

In this paper, attention has been focussed on improving the design of the standard multigrid

method with respect to a particular problem, namely the complex-valued microwave oven problem.

By drawing a comparison with the direct method of cyclic reduction, improved discretisation,

restriction and prolongation operators have been designed, resulting in savings of up to 19 percent

in CPU time used.

Only two smoothing methods have been considered here, point Gaug-Seidel and Kaczmarz.

However, there are many more robust smoothers, such as alternating damped Jacobi, alternating

symmetric line Gaut3-Seidel and incomplete LU decomposition. These methods, and many more,
have been summarised and analysed in detail in [7]. Improvements in the convergence properties of

the modified multigrid method (CR-MG) will almost certainly be realised by using such smoothers.

Finally, attention in this paper has been restricted to the microwave oven problem, although the

ideas presented here can be extended to other problems. For example, in [11], these ideas were

applied to the convection-diffusion equation and it was shown that approximate cyclic reduction
can be used to define the ideal quantity of coarse grid artificial viscosity and the direction in which

it lies.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr D.F. Mayers, for his help and invaluable advice and

Dr A.K. Parrott for reading through a draft of this paper. This work was supported by an SERC

Research Studentship, for which I am grateful. I would also like to thank British Nuclear Fuels plc

for their Bursary Award.

4O

REFERENCES

[1] Tinga, W.R. and Nelson,S.O.: Dielectric Propertiesof Materials for MicrowaveProcessing-
Tabulated. J. Micro. Power, 8(1) : 23-65 (1973)

[2] De Zeeuw, P.M.: Matrix-Dependent Prolongations and Restrictions in a Blackbox Multigrid

Solver. J. Comp. Appl. Math., 33:1-27 (1990)

[3] Freund, R.W.: Conjugate Gradient Type Methods for Linear Systems with Complex

Symmetric Coefficient Matrices. SIAM J. Sci. Stat. Comput., 13 : 425-448 (1992)

[4] Brandt, A.: Multi-Level Adaptive Solutions to Boundary Value Problems. Math. Comp., 31 :

333-390 (1977)

[5] Wesseling, P.: An Introduction to MuItigrid Methods. John Wiley and Sons, Chichester (1992)

[6] Chan, T.F. and Elman, H.C.: Fourier Analysis of Iterative Methods for Elliptic Boundary

Value Problems. SIAM Rev., 31 : 20-49 (1989)

[7] Wesseling, P.: A Survey of Fourier Smoothing Analysis Results. Int. Series of Num. Maths,

98:105-127 (1991)

[8] Kaczmarz, S.: Angen£herte AuflSsung von Systemen Linearer Gleichungen. Bulletin de

l'Academie Polonaise des Sciences et Lettres, A35 : 355-357 (1937)

[9] Buzbee, B.L., Golub, G.H. and Nielson, C.W.: On Direct Methods for Solving Poisson's

Equations. SIAM J. Numer. Anal., 7:627-656 (1970)

[10] Sweet, R.A.: A Generalized Cyclic Reduction Algorithm. SIAM J. Numer. Anal., 11 :

506-520 (1974)

[11] Shaw, G.J.: Cyclic Reduction and Multlgrid. Mayers, D.F., Rollet J.S. and Shaw, G.J.: Fast

Iterative Solvers, OUCL Lecture Notes, Oxford University, Oxford (1991)

[12] Swarztrauber, P.N.: Approximate Cyclic Reduction for Solving Poisson's Equation. SIAM J.

Sci. Stat. Gomput., 8:199-209 (1987)

[13] Hackbusch, W.: Multigrid Methods and Applications. Computational Mathematics (4),

Springer-Verlag, Berlin (1985)

[14] Stfiben, K. and Trottenberg, U.: Multigrid Methods : Fundamental Algorithms, Model

Problem Analysis and Applications. Hackbusch, W. and Trottenberg, U., eds.: Multigrid

Methods, Lecture Notes in Mathematics (960), Springer-Verlag, Berlin (1982), pp.l-176

[15] SchrSder, J., Trottenberg, U. and Witsch, K.: On Fast Poisson Solvers and Applications.

Bulirsch, R., Griegorieff, R.D. and Schr_der, J., eds.: Numerical Treatment of Differential

Equations, Lecture Notes in Mathematics (631), Springer, Berlin (1978), pp.153-187

[16] Ries, M., Trottenberg, U. and Winter, G.: A Note on MGR Methods. Lin. Alg. Appl., 49 :

1-26 (1983)

41

= -

L 7L_ _

=r

u

N94-23677
Uniform Convergence of Multigrid V-Cycle Iterations for Indefinite and Nonsymmetric Problems*

James H. Bramble

Cornell University

Ithaca, NY 14853-7901

Do Y. Kwak

Korea Advanced Institute of Science and Technology

Taejon, Korea 305-701

/7

Joseph E. Pasciak
Brookhaven National Laboratory

Upton, NY 11973

To appear: SIAM Journal of Numerical Analysis

Dedicated to Professor Seymour Patter on the occasion

of the sixty-fifth anniversary of his birthday.

ABSTRACT

In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic

problems. In this multigrid method various types of smoothers may be used. One type of smoother which we

consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi and Gauss-

Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal

form, that is, the product of the operator and its transpose. Other smoothers studied include point and line,

Jacobi and Gauss-Seidel. We show that the uniform estimates of (ref. 6) for symmetric positive definite problems
carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite

problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is

sufficiently fine (but not depending on the number of multigrid levels).

1. INTRODUCTION

The purpose of this paper is to study certain multigrid methods for second order elliptic boundary value

problems including problems which may be nonsymmetric and/or indefinite. Multigrid methods are among

the most efficient methods available for solving the discrete equations associated with approximate solutions of

elliptic partial differential equations. Since their introduction by Fedorenko (ref. 15), there has been intensive

research toward the mathematical understanding of such methods. The reader is referred to (ref. 19), (ref. 17) and

(ref. 3) and the bibliographies therein. Most of these works concern symmetric, positive definite elliptic problems

although a few consider nonsymmetric and/or indefinite problems. In particular, (ref. 1),(ref. 18), (ref. 10) and

(ref. 24) deal with such multigrid algorithms and are most closely related to the subject of this paper. All of these
papers share the requirement that the coarse grid be sufficiently fine. We shall briefly describe their contents.

*This manuscript has been authored under contract numberDE-AC02-76Ctt00016 with the U.S. Department of Energy. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to
do so, for U.S. Government purposes. This work was also supported in part under the National Science Foundation Grant No. DMS-9007185
and by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University. The second author was also partially
supported by the Korea Science and Engineering Foundation.

PIImC,,Cd_G PAGE BLANK NOT FILMED: INTENTIONALLY8LANK

43

The paper by Bank (ref. 1) derives uniform convergence estimates for the W-cycle multigrid iteration with
both a standard Jacobi smoother and a smoother which uses the operator times its adjoint. In each case, a

sufficient number of smoothings are required and a sufficiently fine coarse grid, depending on the number of

smoothings, is needed. Some regularity for the elliptic partial differential equation was also required.

Mandel studied the V-cycle iteration and showed that it was effective with only one smoothing and a

sufficiently fine coarse grid. His result requires that the underlying partial differential equation satisfies the '$ull

elliptic regularity" hypothesis and generalizes the results of Braess and Hackbusch (ref. 2) for the symmetric
positive definite problem. :

Bramble, Pasciak and Xu (ref. 10) studied the symmetric smoother introduced by Bank and showed that

the W-cycle and variable V-cycle worked without making the undesirable requirement of "sufficiently many

smoothings". Somewhat more than minimal regularity was needed.

In (ref. 24), Wang showed that, for the standard V-cycle with one smoothing, the "reduction factor" for the
iteration error was bounded by 1 - C/J + Clhl where J is the number of levels, hi is the size of the coarsest grid

and C and C1 are constants. This estimate deteriorates with the number of levels and will be less than one only if

the coarse grid is subsequently finer as the number of levels increases. Minimal elliptic regularity was assumed.

In this paper uniform iterative convergence estimates for V-cycle multigrid methods applied to nonsymmetric

and/or indefinite problems are proved under rather weak assumptions (e.g., the domain need not be convex).
Uniform estimates were shown to hold in (ref. 6) and (ref. 8) for the V-cycle with one smoothing step in
the Symmetric positive definite case under such hypotheses. We show that these results carry over to the

nonsymmetric and/or indefinite case for a variety of smoothers. The coarse grid must be fine enough but need

not depend on the number of levels J. Such a condition seems unavoidable since, in many cases, it is needed even

for the approximate problem to make sense.

In recent years some other techniques have been proposed to handle the nonsymmetric indefinite case. One
approach in (ref. 14). (ref. 4) and (ref. 7) is to precondition with a symmetric operator and then solve certain

normal equations by the conjugate gradient method. One possible advantage of such a method is that some

nonsymmetric problems which are not "compact perturbations" of symmetric ones may be treated. Of course, the

usual normal equations may be formed and then preconditioned (cf. (ref. 7) and (ref. 20)); this approach seems

to be rather restrictive-in that good preconditioners may be difficult to construct. Other recent approaches have
included Schwarz type methods (ref. 12) and two-level methods in which a "coarse space" is introduced to reduce

the problem to one with a positive definite symmetric part (cf. (ref. 4), (ref. 13) and (ref. 25)).

The remainder of the paper is organized as follows: In Section 2, we describe a model problem and introduce

the multigrid method. In Section 3, smoothers based on the symmetric problem (and used in our nonsymmetric

and/or indefinite applications) are defined and the relevant properties which they satisfy are stated. Section
4 develops smoothers based on the original problem. The main results of the paper, which provide iterative

convergence rates for the multigrid algorithms with the smoothers of Sections 3 and 4, are given in Section 5.

2. THE PROBLEM AND MULTIGRID ALGORITHM.

We set up the model nonsymmetric problem and the simplest multigrid algorithm in this sect!on. We consider,

for simplicity, the Dirichlet problem in two spatial dimensions approximated by piecewise linear finite elements

on a quasi-uniform mesh. The multigrid convergence results hold for many extensions and generalizations as
discussed at the end of Section 5.

44

We consider as our model problem the following second order elliptic equation with homogeneous boundary
conditions.

(2.1)

2 2
0 Ou Ou

-___-ai(au-ff_zl+i_.lbi_-_zi+au=f in f/,
i j--10Xj a i .__

u=O on Oft,

where f_ is a polygonal domain (possibly nonconvex) in R2 and {aij(z)) is bounded symmetric, and uniformly
positive definite for z E _. We assume that au is in the Sobolev space W_(fl) for p > 2/7 (see, (ref. 16) for

the definition of Wp(f_)). Further, we assume that bi is continuously differentiable on fl and that lal is bounded.
Finally, we assume that the solution of (2.1) exists.

Let Hi(fl) denote the Sobolev space of order one on fl (cf., (ref. 16)) and let Hd(ft) denote those functions in
Hl(ft) whose trace vanish on Oft. For v, w E Hol(ft), define

(2.2) A(v, w) = ___ aij Ore--'70x---fdm+ bi_xiw dm + avw dx.
i,j=l

The solution u of(2.1)satisfies

(2.3) A(u, v) = (f, v) for all v e H_(f_),

where (., .) denotes the inner product in L2(ft).

For theanalysis,we introducea symmetricpositivedefiniteform2{(.,.)which has thesame secondorderpart

asA(.,.).We define2{(.,.)by

2 L Ou Ov . L2{(u,,,)= uvd:.
i,j=l

The difference is denoted by
D(u, v) = A(u, v) - 2{(u, v).

The form D(., .) satisfies the inequalities

(2.4) ID(u,v)l _<Cllull, I1"11andID(u,v)l S Cllull I1"11,•

Here II'lh and I1"11denote the norms in H'(ft) and L2(ft) respectively. The second inequality above follows
from integration by parts. Here and throughout the paper, c or C, with or without subscript, will denote a
generic positive constant. These constants can take on different values in different occurrences but will always be
independent of the mesh size and the number of levels in multigrid algorithms.

By the assumptions on the coefficients appearing in the definition of 2{(., .), it follows that the norm 2{(v, v) llz
for v e Hl(ft) is equivalent to the norm on Hl(ft). Thus, we take

Ilvlh = A(,,, v),l,.

We develop a sequence of nested triangulations of f/in the usual way. We assume that a coarse triangulation
{r_} of ft is given. Successively finer triangulations {r/n} for m > 1 are defined by subdividing each triangle
(in a coarser triangulation) into four by connecting the midpoints of the edges. The mesh size of {r_) will be
denoted to be dl and can be taken to be the diameter of the largest triangle. By similarity, the mesh size of {r_}
is 21-mdl.

For theoretical and practical purposes, the coarsest grid in the multilevel algorithms must be sufficiently fine.
In practice, however, the coarse grid is still considerably coarser than the solution grid. Let L and J be greater

45

than or equal to one and set Mk, for k = 1,..., J, to be the functions which are piecewise linear with respect to

the triangulation {r_+_}, continuous on n and vanish on _. Since the triangulations are nested, it follows that

MjcM2c...CMj.

The space Mk has a mesh size of hk = 21-L-kdl = 21-khl.

Fix k in {1, 2,...}. Let us temporarily assume that for every u E Mk,

(2.5) A(u,v)=O for allvEM_ implies u=0.

This assumption immediately implies the existence and uniqueness of solutions to problems of the form: Given a

linear functional F(.) defined on M_, find u E Mk satisfying

A(u,¢) = F(¢) forall¢ e Mk.

In particular, the projection operator Pk : H1(_2) _ Mk satisfying

A(Pku, v) = A(u, v) for all v e Mk,

is well defined.

Clearly, if (2.2) has a positive definite symmetric part then (2.5) holds. More generally, if solutions of (2.1)

satisfy regularity estimates of the form

(2.6) iluil,+o < Cll/l]-l+o,

then, it is well known (of., (ref. 22)) that there exists a constant h0 such that for hk < h0, (2.5) holds and
furthermore

(2.7) II(I - P_)uil < ch_ll(I- Pk)ulll.

and finally,

(2.8) lIP, ulh _<c [lulh.

Even if regularity estimates of the form of (2.6) are not known to hold, then (2.5) is known from a recent result by

Schatz and Wang (ref. 23).

Lemma 2.1 (ref. 23). There ex/sts an ho such that (2.5) holds for hk < ho. Moreover, given • > 0, there exists

an ho(e)> 0 such that :o_8alh_e (0,h0],(2.8)holdsand

(2.9) I1(I - Pk)ull _< ell(/- Pk)u[h.

Remark 2.1. The above • will appear in our subsequent analysis. We note that • can be taken arbitrarily small.

However, L will be taken large enough so that (2.5), (2.8) and (2.9) hold. Thus, the coarse grid size (i.e., L) for

any estimate in which e appears will depend on e.

In our analysis, we shall use the orthogonal projectors/_k : H](fl) _ Mk and Qk : L_(12) _ M_ which,

respectively, denote the elliptic projection corresponding to ,4(., .) and the L2(12) projection. These are defined by

)(Au, v) =)(u, v) for all v E Mk,

46

and

(Q,u,,) = (u, _) for all r • M,.

The multigrid algorithms will be defined in terms of an additional inner product (., ")t on MkMk. Examples of

this inner product in our applications will be given in the next section. Additional operators are defined in terms
of this inner product as follows: For each k, define Ak : Mk ---* Mk and -4k : Mt ---*Mt by

(Atu, v)k = A(u, v) for all v • Mk,

and

(Aku, v)k = A(u, v) for all v • Mk.

Finally, the restriction operator P° 1 : Mk _ Mk-1 is defined by

(P°_lu, v)k-i = (u, v), for all v • Mk-1.

We seek the solution of

(2.10) A(u, v) = (/, _),

This can be rewritten in the above notation as

(2.11)

for all v • Mj.

A_u = QH.

We describe the simplest V-cycle multigrid algorithm for iteratively computing the solution u of (2.3). Given

an initial iterate u0 • M], we define a sequence approximating u by

(2.12) ui+l = Ms:(_i, QH).

Here Mg:(., .) is a map of M.rM2 into M: and is defined as follows.

Definition MG. Set Mgl(v,w) = A11w. Let k > 1 and v, w be in Mk. Assumingthat Mgk-l(',') has been

defined, we define Mgk(v, w) by:

(1) z_ = v + R,(w - A:).
(2) Mgk(v, w) = rk + q, where q is defined by

q = Mgk_,(O, P°_,(w - AI, zj,)).

Here Rk : M_ _ Mk is a linear smoothing operator. Note that in this V-cycle, we smooth only as we proceed

to coarser grids.

In Section 3, we define R, in terms of smoothing operators defined for the form A(., .). Specifically, the

smoothing procedure for the symmetric problem will be denoted/_k : Mt _ Mk and we set Rt =/_t. In Section 4,

we consider smoothers which are directly defined in terms of the original operator Ak.

A straightforward mathematical induction argument shows that Mgj(., .) is a linear map from M:Mj into Mj.

Moreover, the scheme is consistent in the sense that v = Mgj(v, Ajv) for all v • Mj. It easily follows that the

linear operator E = Mg:(., 0) is the error reduction operator for (2.12), that is

u - _i+1 = E(= - ui).

47

Let Tt = RkAkPk for k > 1 and set T1 = P1. Using the facts that P°_lAt = At-lPk-I and Pt-lPk = Pt-I and

Definition MG, a straightforward manipulation gives that for k > 1 and any u E Ms,

u - Mgt(O, AkPku) = (I - Tt)u - Mgk_l(O, Ak-lPk-l(I - Tk)u).

Let Eku = u - Mgk(0, AkPku). In terms of Ek, the above identity is the same as

Ek = Ek-l(I - Tk).

Moreover, by consistency, E = E_ and hence

(2.13) E = (I - T1)(I - T2)... (I - Tj).

The product representation of the error operator given above will be a fundamental ingredient in the convergence

analysis presented in Section 4. Similar representations in the case of multigrid algorithms for symmetric problems

were given in (ref. 9).

The above algorithm is a special case of more general multigrid algorithms in that we only use pre-smoothing.

Alternatively, we could define an algorithm with just post-smoothing or both pre- and post-smoothing. The

analysis of these algorithms is similar to that above and will not be presented.

Often algorithms with more than one smoothing are considered (ref. 3), (ref. 17), (ref. 19). This is not advised
in the above algorithm since the smoothing iteration is generally unstable.

3. SMOOTHERS BASED ON THE SYMMETRIC PROBLEM.

In this section, we consider smoothers which are based on the symmetric problem. The symmetric smoother

will be denoted by/_. We state a number of abstract conditions concerning these smoothing operators. We

then give three examples of smoothing procedures which satisfy these assumptions. In Section 5, we provide

convergence estimates for multigrid algorithms with R, =/_k in Definition MG.

The first two conditions are standard assumptions used in earlier multigrid analyses. For k > 1, let/_k =

I - 1_.4_ (defined on M_) and 5bk = R_Ak/3k (defined on Mj). We assume that:

(1) There is a constant CR such that

(C.1) (u, u)k < CR(RI, u, u)k, for all u e Mk,
At -

where]_k = (I-RT, R_).A-f I and A_ is the largest eigenvalue of A_. Here and in the remainder of this paper,

• denotes the adjoint with respect to the inner product A(., .).

(2) There is a constant 0 < 2 not depending on/c satisfying

(c.2) A(_',v,i'kv) <_oA(i':, _) for allv • M_.

Provided that (C.2) holds, (C.1) is equivalent to

(3.1) (u, u).....___k< C(f_u, u)k, for all u • M_.
At -

When/_k is symmetric with respect to (., .)_, (C.2) states that the norm of Tk is less than or equal to 0. Even in

the case of non-symmetric/_k, (C.2) implies stability of (I - _'_). In fact, for any to • Mj, (C.2) implies that

(3.2)
a((x - fk)to,(x- fk)to) = gCto,to)- 2_i(fkto,to)+ _i(fkto,fkto)

_<ACto,to)- (2 - O)A(_kto,to) _<A(to,to).

48

The final condition is that for k > 1, there exists a constant C satisfying

(C.3) (_'_ku, _'_kU)k_ _)_lA(Tku, u) for all u E Mk.

A simple change of variable shows that (C.3) is the same as

(/_kv,/_kv)k _ C_-_I(Rkv, v)k for all v fi Mk.

In the case when/_k is symmetric, this is equivalent to

(3.3) (Rkv, v)k < C_;l(v, v)_ for all v fi M_

and is the opposite inequality of (3.1). Note that both (C.2) and (C.3) hold on Mj.

Remark 8.1. If Conditions (C.1)-(C.3) hold for a smoother R_ then they hold for its adjoint R_ with respect to

the inner product (., ")k. This means that (C.1) holds for/_k = (I -/(k/(_).4_ -1 and that (C.2) and (C.3) hold

with _*_ replacing Tk. In the case of (C.2) and (C.3), the corresponding inequalities hold with the same constants

as those appearing in the original inequalities.

Example 1. The first example of a smoother is the operator

where I denotes the identity operator on Mk and _k _< _k _< C_k. In this case, (3.1) holds with C = _k/_k, (C.2)

holds with 0 = 1 and (3.3) holds with C = _k]_k- To avoid the inversion of L 2 Gram matrices in the multigrid

algorithm, we use the inner product

(3.4) (u, v)k = h_ _ u(zi)v(zi).
i

Here the sum is taken over all nodes xi of the subspace M_. Note that (., .)6 is uniformly (independent of k)

equivalent to (., .) on Mk.

The remaining smoothers correspond to Jacobi and Gauss-Seidel, point and line iteration methods. We shall
present these smoothers in terms of subspace decompositions. Specifically, we write

!

(3.5) M, = _ M_
i=1

where M_ is the one dimensional subspace spanned by the nodal basis function ¢_ or the subspace spanned by
the nodal basis functions along a line. The number of such spaces I = I(k) will often depend on k. These spaces

satisfy the following inequality.

(3.6) Ilvll _ Ch, Ilvlh for all v e M_.

Example _. For the second example, we consider the additive smoother defined by

!

^--1(3.7) & =
i--1

Here Ak,i : M_ --* M_ is the defined by

(&:, = A(., x) forallX e

49

and Qk,i:Mk _ M_ isthe projectiononto M_ with respectto the inner product (.,.)k.The constant_'isa scaling

factorwhich ischosen to ensure that (C.2)issatisfied(see,e.g.,(ref.11),(ref.5)). Note that/_k issymmetric

with respectto the innerproduct (.,")k.In addition,(3.1)and (3.3)are shown to hold in(ref.11) with point
Jacobi. When the subspaces M_ are definedin terms of lines,(3.1)was proved in (ref.5). The estimate (3.3)

easilyfollowsin the linecase using the support propertiesofthe basisfunctionsand (3.6).For thisexample, we

take (.,")t= (',")for allk.

Example 5. We next considerthe multiplicativesmoother. Given f E Mk, we define]_kby

(1) Set v0 = 0 E M_.

(2) Define vi, for i= 1,...,I, by
^--1

vi = vi-1 4" Ak,iQk,i(f -- ,,4kvi-1),

(3) Set -_kf -" vl.

Conditions (C.1) and (C.2) are known for this operator (see, e.g., (ref. 5)). The next lemma shows that (C.3)
holds for this choice of Rk. For this case, we also take (., ")k = (', ") for all k.

Lemma 3.1. (C.3) holds when [_k is defined to be the multiplicative smoother of Example 3.

Proof. The proof uses the techniques for analyzing smoothers presented in (ref. 5). Fix k > 1 and let

(3.8) = (i - P)(I - Pi-l)... (I -

where 15_ denotes the ,4(., .) projection onto M_ and _0 = I. Note that (I - Tk) = _t and _i-1 = _i +/_igi-l. Hence

i-ll

and for every u e Mk, (cf., (ref. 5))

1

i=I

Since h_ < eA_ i, the proof of the lemma will be complete if we can show that

!

i=l

Expanding the left hand side of (3.9) gives

I I

i=1 j--1

Because of the support properties of (¢_), the subspaces {M_) satisfy a limited interaction property in that for

every i, the number of subspaces j for which (v _, vj) _ O, with v _ E M_ and vj E M_ is bounded by a fixed

constant no not depending on k or I. Lemma 3.1 of (ref. 5) implies that the double sum of (3.10) can be bounded

by no times its diagonal, i.e.

l

(3.11) < .0
i=1

50
z

Applying (3.6) gives

(3.12) (P_t,-1,,, P_t,_I,,) < ChL4(P_£,-1,,, L-,u).

Combining (3.11) and (3.12) proves (3.9). This completes the proof of the lemma.

Remark 3._. The same analysis could be used for successive overrelaxation type iteration.

tt = (I- BP_)(I - flp_-l)...(I- BP1)

where _ E (0, 2) is the relaxation parameter.

In that case,

4. SMOOTHERS BASED ON Ak.

In this section, we consider smoothing operators Rk which are defined directly in terms of the nonsymmetric

and/or indefinite operator Aj,. The first smoother is one that was originally analyzed in (ref. 1) and subsequently
studied in (ref. 10).

Example $. For our first example of a smoother based on Ak, we consider Rt defined by

n_ = _;2A'k.

Here, A_ is the adjoint of Ak with respect to the inner product (., ")k and 5, is as in Example 1. A possible
motivation for such a choice is that, on Mk, the iteration

¢ = ¢-_ + _2A_(/- Ak¢-_)

is stable in the norm (., .)_/2 provided that _ is greater than or equal to half the largest eigenvalue of A_At.

Example 5. This example is closely related to the second example of the previous section. As in that example, we

define the line or point subspaces {M_} for i = 1,..., I. Note that the form A(., .) satisfies a G£rding inequality

,_A(_,_) -, I1,,112< A(_,u) for all u e g01(fl).

Consequently, by (3.6),

(c, - Ch_)A(u, u) < A(u, u) for all u e ML

We will assume that h2 is sufficiently small so that

(4.1) Ch_ < cl/2.

This means that A(.,-) restricted to M_ has a positive definite symmetric part. Hence, the projector P_ : Mk
M_ satisfying

A(Piv, w)= A(,, _) forall _ • M_
is well defined and satisfies

(4.2)

The second norm is taken only over the subdomain fl_ which is the set of points of fl where the functions in M_
are nonzero. In addition, the operator Ak,i : M_ _-. M_ defined by

(Ak,iv, w)_ = A(v, w) for all v, w • M_,

51

isinvertible.We set Rk by I
-I

Rk = 7 _ Ak,i Qk,i.
i--I

We choose V as in Example 2 so that the symmetric smoother defned by (3.7)satisfies(C.2).

Example 6. Our finalexample isthat of Gauss-Seideldirectlyappliedto the nonsymmetric/indefiniteequations.

We assume that the subspace8 {M_} satisfythe conditionsofthe previous example. The block Gauss-Seidel

algorithm (based on Ak) isgiven as follows:

(1) Set v0 - 0 e Mk.

(2) Define vi, for i = 1,..., i, by
vi = vi-i + A-i,]Qk,i(f- Akvi-l).

(3) Set Rkf = yr.

5. ANALYSIS OF THE MULTIGRID ITERATION (2.12).

We provide an analysis of the multigrid iteration (2.12) in this section. This analysis is based on the product
representation of the error operator (2.13). All of the analysis of this section is based on perturbation from the

uniform convergence estimates for multigrid applied to symmetric problems.

We start by stating a result from (ref. 6) estimating the rate of convergence for the multigrid algorithm applied

to the symmetric problem. Specifically, we replace At by .4t and Rk by/_ in Definition MG. Set T1 = P1.
From the earlier discussion, the error operator associated with this iteration applied to finding a solution for the

symmetric problem

is given by E = _7_ where

(5.1)

We then have the following theorem.

Aju = Q:I

_k= (I- _i)(I- _'2)...(I- i'k).

Theorem 5.1 (ref. O). For k > 1, let Rk satisfy (C.I) and (C.2). Under the assumptions on the domain fl and

the coet_cients of(2.1) given in Section 2, there exists a positive constant _ < 1 not depending on J such that

A(gju, g.ru) <_ $2A(u, u) for al ! u E M].._!:_:_ ::: _ :_ ::-:

: z:

To analyze the muitigrid algorithms using the smoothers of Section 3, we use the perturbation operator

We note that for any u,v E Mr, for k > 1,

(5.2)
A(z,_, v) = D(_, _;v)

Indeed, by definition,

= (AkPku,_v)k= A(Pku,7"_kv)

= A(u, _"_kv)= ,4(u,_'_v)+ D(u,_v).

52

The equality (5.2) immediately follows.

To handle the case of k = 1, we have

(5.3)

In fact, by definition,

i(Zlu, v) = D((I - Pl)u, Pay).

A(_l_, v) = A(P_, Av)

= A(., P,_) - D(P,., Pl,)

= A(A., .) + D((Z - P1)., A_).

The following theorem provides an estimate for the multigrid algorithm when the smoothers of Section 3 are used.

Theorem 5.2. Let R_ = Rk and assume that (C.1)-(C.3) hold. Given e > 0, there exists an ho > 0 such that for
hi < ho,

ft(Eu, Eu) < 6_A(u, u) for all u • Ms,

for 6 = $ + c(h_ + e). Here $ is less than one (independently of J) and is given by Theorem 5.1.

Proof. For an arbitrary operator O : Ms _ Ms, let IlOlh denote its operator norm, i.e.,

IlOlla= sup 2(Ou, v)
,,,._,_,A(_, _)mA(v, v)_/_"

Applying(2.4), (2.9) and (2.8) to (5.3) gives

IA(Z_u,_)l _ c, II(z- P1)ulhIlvll__ c, IMh llvlh•

This means that the operator norm of ZI is bounded by Ce. Since the operator norm of (I - Pl) is less than or

equal to one, the triangle inequality implies that the operator norm of (I - P_) = (I -/51 - Z_) is bounded by
l+Ce.

For k > 1, applying (2.4), (C.3), Remark 3.1, and (3.2) to (5.2) gives

[A(Zku, v)[< chk []ulh .A(7"kv, v) 1/2

___chkllulhIlvlh,

i.e., the operator norm of Zk is bounded by chk. Since, by (3.2), the operator norm of (I-Tk) is less than or equal

to one, the triangle inequality implies that the operator norm of (I - Tk) = (I - Tk -- Zk) is less than or equal to
1 + chk. Hence, it follows that

k

IIE,Ila _<(1 + C,) I_0 + chi) < C.
i=2

It is immediate from the definitions that

(5.4) Ek -- Et_ = (E_-a - .Ek-a)(I -- Tk) -- Et,-,Z_.

By (3.2) and the above estimates, for k > 1,

(5.5) IIEk-&lla -<IIEk-_- _k-_llallZ- T*lla+ IIEk-,llallZklla

___IIEk-_- E,-alla + Chk.

53

Repetitively applying (5.5) and using

gives that

lIE, -/_dl,a =]lZdl.a <-Ce

J

HEJ - EJI])t < Ce + C _ hk <_ c(ht + e).
k=2

The theorem follows from the triangle inequality and Theorem 5.1.

Remark 5.1. Note that e can be made arbitrarily small by taking hi small enough. Consequently, Theorem 5.2

shows that the multigrid iteration converges with a rate which is independent of J provided that the coarse grid is

fine enough. The coarse grid mesh size can also be taken to be independent of J.

We next consider the case of Example 4. For this example, we consider first the multigrid algorithm for the

symmetric problem which uses

(5.6) kk = _;2Ak

as a smoother. From the discussion in Section 2, the iteration (2.12) with/_k (given by (5.6)) and Ak replacing,

respectively, Rk and Ak in Definition MG, gives rise to the error operator given by (5.1) where, as above, for

k > 1, Tk = [_k.4kPk. The smoother (5.6) does not satisfy (C.1) and so the first step in the analysis of the

nonsymmetric and/or indefinite example is to provide a uniform estimate for Ej given by (5.1). Such an estimate

is provided in the following theorem. Its proof is given in the appendix.

Theorem 5.3. Let Ej be given by (5.1) where Tk = Rkl_kfOk and Rk is defined by (5.6). Then,

f_(Eju, Eju) <_ $2A(u, u) for all u e Mj.

Here 6 is less that one and independent of J.

We can now prove the convergence estimate for multigrid applied to (2.1) using the smoother of Example 4.

Theorem 5.4. Let Rk be defined by Example 4. Given e > 0, there exists an ho > 0 such that for hi <_ ho,

fl(Eu, Eu) <_ _2A(U, U) for ali u • My,

for 5 = 6 + c(hl + e). Here 6 is less than one (independently of J) and is given by Theorem 5.3.

Proof. For k > 1, we consider the perturbation operator

Zk = Tk - 7"k = X'_2(A_AkPk - fi2Pk) •

Clearly,

(5.7) Zk = X;2[A_(AkPk - f_kPk) + (Ark -- Ak)AkPk].

As in (5.2),
X;1A((AkPk - .4_Pk)u, v) = X;1D(u, AkPkV)

from which it follows using (2.4) that

I[X'kl(AkPk -- AkPk)ll_ _ chk.

A similar argument shows that
IIX;I(Ag- Ak)Pkll_ - ch_.

54

|

Itisnot difficultto show that

[[A_lla< Clk.

Combining the above estimateswith (5.7)gives

[IZk[l_ < IlA_'Atkll_llA;'(AkPk- ikPk)l[_

+ II_k_(a_- Ak)Pkil_llXkb_kPkll _ ___Chk.

The remainder of the proof is exactly the same as that of Theorem 5.2. This completes the proof of the theorem.

We next consider the case of Example 5. We use perturbation from the multigrid algorithm for A which uses

the smoother Rk defined by Example 2. Theorem 5.1 provides a uniform estimate for the operator norm of J_j.

Theorem 5.5. Let Rk be defined by Example 5. Given _ > 0, there exists an ho > 0 such that for hi <_ ho,

A(Eu, Eu) <_ 62A(u, u) for all u 6 M j,

for 6 = $ + C(hl + e). Here $ is Iess than one (independently of J) and is given by Theorem 5.1 applied to Rk

defined in Example 2.

Proof. For this case, the perturbation operator Zk is given by

I

i=1

As in (5.3),

Applying (2.4), (3.6) and (4.2) gives

(5.s)

and hence

A((P_- P_)_,v) = D((; - P_)_,P_v).

A((P_- P_)_,_) < chkII_lh,ntII_ll_,nt

l

.4(Zku,v) <_cheF_ " II_lh,n_II_lh,nt•
ill

Using the limited overlap properties of the domains, f_ gives

IIZkll__<chk.

The remainder of the proof of the theorem is exactly the same as that given in the proof of Theorem 5.2.

We finally consider the case of Example 6. We use perturbation from the multigrid algorithm for .4 which uses

the smoother/_k defined by Example 3. Theorem 5.1 provides a uniform estimate for the operator norm of _:j.

Theorem 5.6. Let Rk be defined by Example 6. Given e > 0, there exists an ho > 0 such that for hi <_ ho,

.4(Eu, Eu) <_ 62i(u, u) for all u e Mj,

for 6 = 6 + c(hl + e). Here $ is less than one (independently of J) and is given by Theorem 5.1 applied with [_k

defined as in Example 3.

Proof. The perturbationoperator for thisexample is

55

where _t is given by (3.8) and
ei = (I - P_)(I - P_-])... (I - P_)

with go = I. As in (5.4),
t, - e, = (x - Pb(t,-, - _,-,) - (P_- PbC,-,.

Since the last two terms are orthogonal with respect to ,3(., .) we have that

II(_,- c,)ull_= II(Z- P_)(_,-,- c,-,)ull_+ II(P_-P_)C,-l_ll_.

Because of (5.8) and the fact that the operator norm of (I -/_) is bounded by one, it follows that

II(t,- c,)_ll_< i](L, - c,-,)_il_ + ch_ iic,-,_ll_,_•

Summingoveri, since& = So= I, weobtain

t

(5.9) I1(-_,- c,),,ll_< ch_,_ IIC,-,,,ll_.n_.•
i=1

We shall show that

(5.10) IIC,-,,,ll_.n_._<ClMI_.
i=]

By the arithmetic-geometric mean inequality, the definition £i and the limited interaction property (see (3.10) and

above) it follows that

t t t

_ IIC,_,,,Ih2,,_,:< 2_ II,,Ih__, + 2_11,, - c,-,,,ll_.,_;
i=1 i=l i=1

t i-I 2

< Cll,.,ll_+ 2_ _ P_£,.-]u
i--1 m=' 1,fl_

(5.11) t

< C(ll,.,ll_-+ _ _ IIPrC,,,-,,,II_._,)
m=l i=l

<_C(ll l +
m=|

In order to estimate the last term on the right of (5.11) we write

(5.12)

IIP_T,,,-,,,II_= A(PyS,,,_,,,,P_a._iu)
= .,k(c,.-,-Or,,)';:(C,,,_,-C,,,),,)
= A((c.,__- s,.)u,(c,.__+ c,.)_)- 2J(P_C,.__,c,.,.)
= A(c,.__,,c,.__,)- A(s,._,c,.,.,)
-- 2A(P_Cm-I_, (I -- P_)Cm-1)t_).

Now by (5.8)

(5.13)
ft(P_'C,,,_,u,(I- P_")£,,,_,u)= A(P_,"C,._,u,(.P_'- P_)E__])u)

<_Ch_IIPr£_-]_IIA II_-,-,,-l_lh,_r.

56

Hence, combining (5.12) and (5.13), we have

IIP_gm-_ll_ < C[A(:..,_,u, C.,_,u) - A(g.,u, g.,u)] + Ch_ IIE,.__ull_,nr.

Summing over m we conclude that

t t

m=l m-'=]

This together with (5.11) yields (5.10) when h_ is small enough. Finally, we obtain from (5.10) and (5.9) that for
k>l,

IlZklh < Oh,.

The remainder of the proof of this theorem is the same as that of Theorem 5.2.

Remark 5. _. The same analysis could be used for successive overrelaxation type iteration. In that case,

tt = (I - 13P])(I -/3Pl-')... (I -/_P_)

where j3 E (0, 2) is the relaxation parameter.

Remark 5.£ Many extensions and generalizations of the techniques given above are possible. These techniques

lead to uniform estimates for multigrid iteration methods for solving nonsymmetric and/or indefinite problems for
the following applications.

(1) Approximations using higher order nodal finite element spaces.

(2) Three dimensional problems.

(3) Problems with discontinuous coefficients as discussed in (ref. 6).

(4) More general boundary conditions.

(5) Problems with local mesh refinement as described in (ref. 11).

(6) Finite element approximation of problems on domains with nonpolygonal boundaries as discussed in
(ref. 6).

In addition, the perturbation analysis given above can be combined with results for additive multilevel

algorithms, for example, Theorem 3.1 of (ref. 6). This leads to new estimates for additive multilevel

preconditioning iterations applied to indefinite and nonsymmetric problems. Provided that the coarse grid is
sufficiently fine, the operator

J

k=l

has a uniformly (independent of J) positive definite symmetric part with respect to the inner product ,/,(., .) and
has a uniformly bounded operator norm. These results extend to all of the applications discussed in Remark 5.3.

6. APPENDIX

We provide a proof of Theorem 5.3 in this appendix. We will apply the analysis given in the proof of Theorem

3.2 of (ref. 6). Note that we cannot directly apply Theorem 3.2 of (ref. 6) since the smoother/_t = _t-_At does

not satisfy (C.1). We note, however, that Theorem 5.3 will follow from the proof of Theorem 3.2 of (ref. 6) if we

show that (C.2) holds as well as (3.5) and (3.6) of (ref. 6) with Tt replaced by Tk defined above. Clearly, (C.2)

holds with 0 = 1. The remaining two inequalities corresponding to (3.5) and (3.6) of (ref. 6) are

(6.1) < forall e Mr, l < t

57

and

J

(6.2) _(_,_)< c _-:),(_:,_)
kffil

for all v E Mj.

Here 77is less than one and independent of k and I.

From the definition of Ak, we obviously have

,4(_kv,v) < 5,;',4(,Lv, v) = A(_v, _).

As in (ref. ?), we have set Tk ----ikl-4k • Inequality (6.1) follows from Lemma 4.2 of (ref. ?).

Inequality (6.2) can be rewritten,

' I:)
k=2

To prove this we proceed as follows. Let u E Mj and Q0 = 0. Then

(6.4)

J

A(_,,_,)= _] .h(u, (Qk--Qk_l)U)
k=l

kffi2

j) 1/2+ __,5,_(.4-;'(Q_- Q__,)_,,(Q_- Qk-_l_,lk
kffi2

Now, for k > 1,

(Ak-l(Qk -- Qk-1)u, (Qk -- Qk-1)u)k

(Ai'/_(Qk - Q__,)u, ¢)_
----sup

((Qk- Qk-,)_, (Qk- Qk-,)¢)_
= sup

By well known approximation properties,

((Qk- Qk-,)¢, (Qk- Qk-_)¢)_n <-C II(Q_- Qk-,)¢ll - Chk II_Plh•

Combining the above estimates gives

(6.5)

J
-2 ^-1

,fi(Qlu, Q1u) + ___ Ak(A_ (Qk - Qk-1)u, (Qk - Qk-,)u)k
k=2

J)<_C(A(Q_u, Q_u) + _ Ak II(Qk - Q_-,)utl =
kffi2

< CA(u, u).

The last inequality of (6.5) is (4.5) of (ref. ?) and also can be found in (ref. ?). Combining (6.4) and (6.5) proves

(6.3) and hence completes the proof of the theorem.

58

P_EFER EN CE S

1 R. Bank, A comparison of two multilevel itemt_c_ method_ fl, r nons_mmetric and indt:finite elliptic finite elcm¢:nt eqm_tion,, SIAM J

Numer. Amd. 18 (1981), 724-743.

2. Braess, D. and Hackt,useh, W., A new _nvergence proof for the m_ltiqr_d method includin 9 the V-cycle, SIAM J Numer. Anal. 20

(1983), 967-975.

3. J.H. Bramble, Multi9rid Methods, Cornell Mathematics Department Lecture Notes: 1992.

4. J.H. Bramble, Z. Leyk, and J.E. Pasciak, Iterative schemes for non-symmetric and indefinite elliptic boundary value problem¢. Math.

Comp. (to appear).

5. J.H. Bramble and .I.E. Pasciak, The analysis of smoothers for multigrid algorithms, Math. Comp. 58 (1992), 467-488.

6. J.H. Bramble and J.E. Pasclak, New estimates for multigrid algorithms including the V-cycle, Math. Comp. (to appear).

7. J.H. Bramble and J.E. Pasciak, Preconditionezl ,terative methods for nonselfadjoint or indefinite elliptic boundary value problems,

Unification of finite element methods, (Ed. H. Kardestuncer), Elsevier Science Publ. (North-Holland), New York, 1984, pp. 167 - 184.

8. J.H. Bramble and J.E. Pasciak, Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity

(1992), Brookhaven Nat. Lab. #BNL-47892.

9. J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu, Convergence estimates for multigmd algomthms without regularity assumptions, Math.

Comp. 57 (1991), 23_45.

10. J.H. Bramble, J.E. Pasciak, and J. Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems, Math.

Comp. 51 (1988), 389-414.

11. J.H. Bramble, J.E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990), 1-22.

12. X.-C. Cai and O. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Stat. Comp. (to appear).

13. X.-C. Cai and J. Xu, A preconditioned GMRES method for nonsymmetric and indefinite problems, (Preprint).

14. H.C. Etman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Yale Univ. Dept. of Comp. Sci. Rep. 229,

(1982).

15. Fedorenko, R.P., The speed of convergence of one itemtive process_ USSR Comput. Math. and Math. Phys. (1961), 1092-1096.

16. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Bost,m, 1985.

17. Hackbusch, W., Multi-Grid Methods and Applications, Springer-Verlag. New York, 1985.

18. Mandel, J., Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step. Proc. Copper Mtn. Cont'.

Multigrid Methods, vol. 19, Applied Math. Comput., 1986, pp. 201-216.

19. J. Mandel, S. McCormick, and R. Bank. Variational multigrid theory, M,ritigrid Methods, Ed. S. McCormick, SIAM, Philadelphia,

Penn., 1987, pp. 131-178.

20. T.A. Manteuffel and S.V. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal. 27 (1990), 656--694.

21. P. Oswald, On discrete norm estimates related to multilevel pweonditioners in the finite element method, (Preprint).

22. A.H. Schatz, An observation concernin9 Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959-962.

23. A.H. Schatz and J. Wang, New error estimates in finite element methods, (Preprint).

24. J. Wang, Convergence analysis of multigr_d algorithms for non-selfadjoint and indefinite elliptic problems (1991), Proceedings of the 5th

Copper Mountain Conference on Multigrid Methods.

25. J. Xu, A new class of iterative methods for nonsyrnmetric boundary value problems, (Preprint).

59

I
!

/

i MULTILEVEL COST-SPACE APPROACH TO SOLVING ?. "_
THE BALANCED LONG TRANSPORTATION PROBLEM*

Kevin J. Cavanaugh
U.S. Coast Guard

Research and Development Center

Groton, CT

Van Emden Henson

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

SUMMARY

We develop a multilevel scheme for solving the balanced long transportation problem, that is,

given a set {ck_} of shipping costs from a set of M supply nodes Sk to a set of N demand nodes Dj,

we seek to find £ set of flows,-{xkj}, that minimizes the total cost_M1 _=1 XkjCkj. We require that

the problem be balanced, that is, t_e total demand must equal the total supply. Solution

techniques for this problem are well known from optimization and linear programming. We examine

this problem, however, in order to develop principles that can then be applied to more intractAble

problems of optimization.

We develop a multigrid scheme for solving the problem, defining the grids, relaxation, and

intergrid operators. Numerical experimentation shows that this line of research may prove fruitful.

Further research directions are suggested.

INTRODUCTION

The transportation problem is the simplest of network flow problems. It is posed on a bipartite

graph, consisting of a set of M supply nodes, a set of N demand nodes, and a set of arcs connecting

them. Each supply node S_ has a fixed amount s_ of a commodity which it can provide. Each

demand node D3 has a fixed requirement dj for that commodity, and for each arc (i, j) connecting

supply node Si to demand node Dj there is an associated cost per unit flow c_j. When the total

supply equals the total demand the problem is balanced. When M << N, the problem is referred to

as a long transportation problem. Denoting the flow on arc (i, j) by xij, the transportation problem

*This work wassuppo_edin part byNaval Postgraduate School Research Council, Grant No. MA000'MA999/4476-
4479

PI_r=,,,_OtNG PAGE BLANK NOT FILMED PAGE_ INTENTIONALLYBMN_ '_

61

can be expressed

M N N M

Minimize _c_jxq subject to: _xq = si, _xij = d3, xij:>0.
i=l j----I j----I i=l

Let b denote an (M + N)-vector whose first M entries are the available supplies s_ at nodes $I

through SM, and whose last N entries are (negatives of) the required demands d_ at demand nodes

DI through DN. Let K be the number of arcs in the problem. Throughout this work we shall

assume that every supply node is connected to every demand node, so that K = MN. Let the

K-vector x be composed of the flow on the arcs from the M supply-nodes to the N demand nodes

in some order, and the K-vector c be the cost of shipping on those arcs in the same order. We

denote by A the incidence matrix of the graph, so that A has as many rows as there are nodes in

the problem, M + N, and as many columns as there are arcs (MN). Each column of A is

associated with one arc of the problem, and they are arranged in an order that matches the order of

the vectors c and x. Each column has exactly two non-zero entries: a +1 in the row corresponding

to the tail (supply) node S_ of the arc, and a -I in the row corresponding to the head (demand)

node Dj. Each row of A is associated with one of the constraints of the problem [1]. Then the

problem may be written in matrix notation as

Minimize:

Subject to:

cTx

Ax = b,

x>_O.

A simple example is presented in Figure 1. In the example, there are four supply nodes, having

12, 15, 10, and 7 units of the commodity to deliver. There are three demand nodes, requiring 13,

20, and 11 units of the commodity. We seek to find a flow vector

(Xll x12 x13 x21 x22 x23 x31 x32 x33 x41 x'42 x43) T

given that the vector of costs, written in corresponding order, is

(2 1 5 6 4 3 1 7 4 2 3 4) T.

The algebraic description of this problem is to find x such that cTx is minimized, subject to the

system of constraints

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

-1 0 0 -1 0 0 -1 0 0 -1 0 0

0 -1 0 0 -1 0 0 -1 0 0 -1 0

0 0 -1 0 0 -1 0 0 -1 0 0 -1

Xll _

X12

X13

2_21

X22

X23

X31

X32

X33

X41 !

x421

X43]

(12
15

10

= 7

-13

-20

-11

$i

&

&

&

D1

02

03

Figure 1: A simple exampl¢ of a transportation problem

Very little work has been done on multigrid methods for discrete optimization problems.

Significant studies to date are [2], [3], [4], and [5]. The traditional optimization algorithm which

most closely resembles a multilevel algorithm is aggregation/disaggregation [6], [7], and [8], in

which nodes are aggregated in a logical way in order to reduce the size of the problem, and the

solution to the smaller problem is disaggregated to provide an initial estimate for the solution to

the original problem. The most successful work to date, and the work that inspired this study, is

that of Kaminsky [4].

COST-SPACE

In [4] it is required that the demand nodes occupy a physical location in space, and that a

relationship exist between transportation costs and distances. This is done so that the coarsening

step may be performed by aggregating together demand nodes that are physically near one another.

For this to make sense, it is necessary that shipment to each of the aggregated demand nodes

involve a similar cost, which naturally occurs if the shipping cost is a function of distance. For

many applications this makes perfect sense; the cost of shipping a commodity is often directly

linked to the distance the commodity must be shipped. This restriction is overly limiting for other

types of problems, however. For example, the manpower assignment problem, in which a specified

number of jobs must be assigned a given set of workers, can be formulated as a transportation

problem. There is no distance involved in such a problem, and cost of assignment is related to other

factors, such as the cost of training an individual for a specific task.

In order to address problems that have no geometrical dependence of cost on distance, we

employ a change of coordinate systems from physical space to a space we describe as cost space.

For the M x N problem, cost space is the M'dimensional space in which each of the coordinate

axes is the cost of shipping from one of M supply nodes. Each of the N demand nodes is placed in

cost space at the point whose coordinates are the unit costs of shipping from the supply nodes to it.

For example, the three demand nodes in Figure 1 would be placed in a four-dimensional cost space,

and would have the coordinates D1 = (2, 6, 1, 2), 02 = (1, 4, 7, 3), and D3 = (5, 3, 4, 4). This change

of coordinate systems means shipping cost becomes the metric of the problem, so that two demand

63

nodesare "near" eachother only if the shippingcostsare similar, and the aggregation of

neighboring demand nodes automatically ensures the similarity of their costs.

Posed in cost space, the dimensionality of the problem equals the number of supply nodes. In

traditional multigrid methods, one typically uses grids that are tensor products of one-dimensional

grids, each having a cardinality of gridpoints that is a power of two. In the cost space approach this

would lead to a very rapid growth in the size of the problem; for this reason the cost space

approach can be applied only to problems with a relatively small number of supply nodes. This is

one reason for restricting our attention to the long transportation problem.

Reduced dimension cost space

If at least one supply node is connected to all demand nodes (and in our work we assume this to

be true of all supply nodes) then we can transform the M × N transportation to an equivalent

(M - 1) × N problem, which we call the reduced dimension problem. Since we are dealing with the

long problem, the transformed problem is somewhat simpler and less expensive to solve. The

transformation is accomplished as follows. Suppose that supply node St is connected to all demand

nodes. Then for each demand node D_, we subtract el j, the cost of shipping from supply node Sl to

Dj, from all of the shipping costs into demand node Dj. That is, we form an auxilliary cost vector

_sj = c_j - clj. The result is that for supply node Sl, all the demand nodes map to the origin in cost

space. Effectively St has been removed from the problem, leaving an (M - 1) x N problem to be

solved. For example, if we use the cost of shipping from $2 on the example in Figure 1, the

transformed cost vector becomes

_= (-4 -3 2 0 0 0 -5 3 1 -4 -1 3)T

We can show that while the objective function value is different for the new problem, a solution for

one is equivalent to a solution for the other.

Theorem 1 Let the M x N balanced long transportation problem be rcpre.sented by _l bipartite

graph G, and suppose thal supply node St is connected to all demand nodes. Let b b(th_ (M + N)

length column vector whos_ fir._t M enlries are th.e supplies at the supply nodes or_d u'hos_

remaining N entries are the negatives of the demands at the demand nodes. Let A be the adjacency

matrix of the graph G; that is, for eact, arc (i,j) we have A(i, (i - 1)N + j) = 1 and

A(M + j, (i - 1)N + j) = -1. Let c be the (M + N) length vector ,,,hose k = (i - 1)N + j element is

the cost c_j of shipping from node Si to node Dj along arc (i,j). Define _ to be the v_ctor whose k °'

entry is fik = Cij -- Ctj. Then x* is a solution to the: problem

Minimize: c7"x

Subject to: Ax = b,

x>_O,

if and only i.f it is a solution to the probh:m:

3Ii'1_im ize:

,%b.iect to:

_. TX

Ax = b,

x>0.

64

Proof:

TX =

M N M N

k=l ./=1 k=l j=l

M N

= -
k=l j=l

M N M N

k=1 j--I k--1 j--1

N M N
T T

i=i k=l i=1

M

since _ xkj = dj in the balanced problem. But _._=1 ct_dj does not depend on x, and therefore
k=l

C_.TX achieves its extreme values precisely when c TX does. II

This transformation of the costs to reduced-dimension space maps all costs of shipping from Sl

to the origin in cost space. As will be shown in the next section, our algorithm requires that the

demand nodes be sorted once according to the cost of shipping. Since sorting is a fairly expensive

operation, the savings generated by reducing the dimension of the problem are tangible. Once the

transformation to reduced-dimension cost-space has been performed, the resulting problem may be

solved with no further consideration of the transformation. Therefore, in the remainder of this work

it is assumed that when an M x N problem is to be solved, it may be the reduced dimension

version of a problem that was originally (M + 1) × N.

A MULTIGRID APPROACH TO THE TRANSPORTATION PROBLEM

Following traditional multigrid design approaches, we develop the necessary tools to devise a

multigrid V-cycle, which we will combine with a nested iteration to create an FMG algorithm. In

particular, it is necessary to devise restriction and prolongation methods, some form of local

relaxation, and to weave them into an algorithm.

Restriction

To devise a restriction algorithm, it is first necessary to define a coarse grid. We use an approach

in which each gridpoint on the coarse grid is a demand node for the coarse grid problem, and

represents a pair of demand nodes on the fine grid. This is accomplished as follows. The demand

nodes are first sorted by increasing cost of shipping from $1, and divided into two groups about the

median of the sorted cost. This procedure results in two groups of demand nodes, one with a lower

cost of shipping from $1, and one for which shipping from $1 is more expensive. Each of these

groups are then sorted according to increasing cost of shipping from Sz and divided into two groups
about the median cost. This results in four groups, one for which shipping is expensive from both

supply nodes, one group for which shipping is inexpensive from both supply nodes, one group for

which shipping is expensive from $2 and inexpensive from $1, and one group where shipping is

expensive from 81 and inexpensive from $2.

65

Cj 2

Cj2'

_4h

i ° i
ol

I
01 •

_2

_'-_2h

, Cjl c jl

, cjl . cjl

Figure 2: A simple example of a coarse,ing process for tl_(transportation problem

If there are more than two supply nodes in the problem, this process is continued. The four

groups are each sorted by cost of shipping from supply node $3, then divided into smaller groups if

necessary and sorted again, according to cost from $4, etc. If the groups contain more than two

nodes after the noc[es have been sorted according to cost from all supply nodes, the sorting process

begins again with cost from $1 on each of the groups. Eventually, the nodes will be sorted into

pairs that have similar shipping costs from all supply nodes. Each of these pairs of demand nodes is

then replaced with a single coarse grid demand node, the collection of which constitutes the first

coarse grid._ _ -__-_:-- =:- - -: -_.......

Purther coarsening is accomplished by repeating the procedure described above on_ the coarse

grids to produce still coarser grids. Figure 2 shows a simple example of the coarsening process. If

the number of points on the original grid is a power of two, then in the limit a coarsest grid would

consist of a single demand node. As in traditional multigrid methods, once the hierarchy of grids is

established it is stored, so that the sorting process need never be repeated.

Three quantities must be restricted when aggregating a pair of fine grid demand nodes into a

coarse grid demand node: the demands, flows, and costs. Let D_ be the coarse grid node

representing the fine grid nodes D_ and D_. It seems natural that the demands can be restricted

simply by summing the demands of the two fine grid nodes to produce the demand at the coarse

grid node, aah r2h[Ah d h] h*h Lt*j, dj + d h. Similarly, the flow 2h from any supply node Sk into the_ Xkr n

coarse demand node ' should be the sum of the flows from Sk to each of the fine grid demand nodes

that make up the coarse grid node, 2h i_h h h

Restricting the cost of shipment is more complicated, and no obvious "best" approach is

apparent. However several methods can be considered. The simplest of these is todefine the coarse

cost c_ to be the minimum of the fine costs, i.e., 4 h r2hr..h cht] _ min(chj, _t)" Other simple--- "_h t'kj,

schemes are readily devised, such as using the maximum of the fine costs, or a weighted average of

the fine grid costs. We use a weighted average of the fine grid costs. Again, there are several

possible weightings, each having valid arguments for and against it. Three schemes were tested in

66

somedepth, equalweighting, flow weighting,and demandweighting:

Equal weighting: 2

Demandweighting:

Flow weighting:

+ '
h h h h

XkjCkj -'[- X klCkl

With flow weighting, provision must be made for the case where there is zero flow on both arcs. In

such a case flow weighting can be replaced with either demand weighting or equal weighting. In

general, we found that demand weighting most consistently gave the best results, and adopted it for

our algorithm.

Prolongation, or Interpolation

Suppose that the problem has been solved on the coarse grid _2h. We seek a method of

prolongation, that is, a way in which the coarse grid solution can be interpolated onto the fine grid.

In the coarse grid solution there is some quantity of flow xk,.,,2hgiving the flow from each supply node
2h

Sk to each coarse grid demand node d,n. Each such demand node on the coarse grid, however,

represents the aggregation of two demand nodes on the fine grid, d h and d h. An interpolation of the

coarse grid solution, therefore, can be constructed by treating the M flows Xlm,2hx2m,2h..., XM,n,2h into

the coarse grid demand node 2hdin, as supplies. Interpolation, then, consists of solving for each coarse

grid demand node, the M × 2 transportation problem with those supply values, the two demand

nodes d h and d h, and the shipping costs c_, k = 1, 2,..., M. (Figure 4 shows schematically how

the interpolation process appears.)

Having defined the interpolation process as finding the solutions to many small transportation

problems, we turn our attention to the mechanism for finding these solutions. A method for solving

such M × 2 problems is described below. The method is a special case of Vogel's approximation

method.

Algorithm 1 Soh,ing the M x 2 Balanced Tral,sportation P_vblem

1. For each ._uppl!l nod_ Sk, .find the differenc_ in cost of.shipping 5k = [c_j - c_t [to the two fine

grid demand node_ d_ al_d d_.

2. Rank th(M .__upply nodes in decreasing order of these cost differenti,ls, do that

5_ >_ 5_ >... >_ 5M.

3. R_peat urttil all ._upply _odes are removed firm the problem:

(tl) D, not_ the supply r_odr ell the top of the ordered list as the_ "c;trre,t'" supply node. and

alloc(,t_ .flow to th_ demand nod¢ with the lower co:_l of shipment, that i._, along the ha._t

c.rpensive arc. thu._ d_t_rmining a "current" de:mand node. (In th_ _t,(M that mor_ than

one nod_ h_._ lhe t_trgc.:l d_rerential cost, select from among them th_ nod_ with the

67

&

&

$3

&

&

D1

D2

Cll = 5

c12 = 1
c21 = -2

c22 =6
csl =6

C32--2
ca1 =8

c42 =2
c51 =4

c52 =3

_1 =4

_2=8

_3=4

64=6

65=1

Figure 3: Example problem illustrating th(.solution method for an M x 2 problem.

smallest cost along one of its two arcs). Allocate flow along this arc until either the

demand at the current demand node is satisfied or until the supply at the current supply

node is exhausted.

(b) If the supply at the current supply nod(is exhausted, remove that supply node from thc

problem.

(c) If the demand at the current demand node is satisfied, remove that demand node from

the problem, allocate the remaining supply fcom the current supply node to the ccmaining

demand node, and remove the current supply node from the problem.

4. Stop.

As an example of this procedure, consider the five by two problem shown in Figure 3. The five

supply nodes S_, 5'2,.., $5 have, respectively, 15, 12, 16, 18 and 14 units of the commodity to
deliver. The demands of the two demand nodes D1 and D2 are 30 and 45. Let 5 = (4 8 4 6 1) T be

the vector whose ith entry is the difference 6i between shipping cost from supply node S_ to the two

demand nodes (the costs themselves are given for each are in the figure). Sorting from largest to

smallest value of 6i, the supply nodes are ordered ($21 $4, S1, $3,_)- Note that, while the

differences for nodes $1 and $3 are the same, the cost c12 alongthe arc from node $1 to node D2 is

less expensive than either of the arcs incident from_ node Sa. Starting with node $2, then, as much

flow as possible is sent along the least expensive arc. In this case, that is the arc to demand node

D2. Since this demand exceeds the available supply from node $2, all of the flow from node $2 goes

along this arc. Similarly, node Sa and then node Sa send all of their supply to node D2. When node

$3 has sent 12 units of flow along its least expensive arc, the demand at node Da is completely met.

Thus node $3 sends its remaining units to node D2, as does node $5. Although the arc from node

$5 to D1 is less expensive, the demand at D_ has been met from supply nodes where the difference

in arc costs is greater.

We can show now that because of the special structure of the M x 2 problem, i.e., the fact that

there are only two demand nodes, this procedure produces an optimal solution.

68

Theorem 2 L(:! x b(the veclor of flou',s assigT_cd for tl_(M x 2 probl(m _lsing the: algorithm givel_

above. Thel_ x is al_ optima! solution 1o the M x 2 problem.

Proof'. Suppose that x is not an optimal solution. Then there exists a flow x* _ x such that

z* = cTx * is optimal. We will show that if x is determined by the algorithm given above and

z = cTx, then z* _>z, contradicting the assumption that x is not an optimal solution. Letting

_k = Ickl - ck2l for each k = 1,2, m..., M, assume the supply nodes have been ordered in

decreasing order of _ so that gl -> _2 >_ ... _> 6M. Let i be the first supply node for which x* differs

from x, and without loss of generality, assume that cil _< ci2. Let A = xil - x_.1. We first observe
five useful facts:

. Since the problem is balanced, total flow out of Sk equals the supply, so that

sk = xkl + xk2 = x_l + X'k2 for every k, implying xkl - X'k1 = X'k2 - Xk2.

2. In particular, since A = xil -- x_'l then -A = x_2 - xi2.

.

.

5.

Since the problem is balanced, total flow into D1 equals demand, so that dl = _M1 x_l and
dl M •= _=_ xkl. Subtracting these two relations, and noting that x and x* do not differ for

j = 1,2,... ,i - 1, we find that 0 = xil - x_ + _Mi+_(x3_ -- x;_), implying that
/_ M •= Ej_-_+_(zj_- xj_).

Using similar reasoning, we obtain -A = EMi+l(x;2 -- x_).

By construction, since ci_ < c_, then xi_ is as large as it can possibly be, so that if x and x*

differ for node i then xi_ > x_, implying that A > 0.

Next, we observe that

Z* "-" Z "1- Z* _ Z

Z Jr- cTx * -- cTx

M M

j=i j=i

where we have used the fact that x* and x do not differ for j < i. Separating the flows from supply

node i, we can write

Z _

M

= z + (<_- _,_)_1+ (<,- _,,)_, + E (_;1-_,_)c,_+
j--i+_

M

= _ - a_ + _ + E (_;1-_,_)(c,_- c;_)
j=i+l

M

j=i+l

where we have used the fact that xk_ - x*_ = X*k_ -- x_ for all k. Recalling that _k = Ic_x - c_[,

and that since C_l _< ci_ then _i = cn - ci_, we observe that

z* >_ z+A_i+

M

(X;1--Xjl) (--_j).

j=i+l

69

Figure 4:

An illustration of interpolation bg local optimization. The flows in the 3 x 2 coarse grid problem are

the supplies for the two 3 × 2 local problems. The combination of the flows soh, in 9 those two local

problems makes up the interpolated solution to the 3 × 4 fin_ 9rid problem.

Since the nodes are ordered in decreasing order of 5k, we know that -6i _< -Sj for all j > i, and

therefore M

j_--i+l

Finally, recalling that A = EM_+I(x_I -- xj1), we obtain

z* >_ z + A S_-g_A.

Therefore z* > z, contradicting the assumption that x is not an optimal solution.
|

Relaxation

Suppose that we have solved the coarse grid problem, and have interpolated that solution by

solving an M × 2 transportation problem for each coarse grid demand node in order to pass the

local solution to the two fine grid demand nodes represented by each coarse grid node. The supplies

for this local M × 2 problem are the coarse grid flows. Figure 4 displays a schematic showing how

the interpolation process appears graphically. : : : :: :: _:

It is important to note that while each of the local M × 2 problems has been solved optimally,

there is no reason to expect that the total set of fine grid flows thus assigned will be optimal. For

this reason, it is essential that we devise some kind of "relaxation" scheme, whose task is to smooth

or correct errors left by the interpolation scheme.

i :
7O

When two M × 2 subproblem solutions are viewed from a more global perspective, as a solution

to an M × 4 problem (or as a portion of a solution to a still larger problem), this combination of

locally optimized solutions may be flawed, in that too many arcs may have flow on them. This is

because the minimum value of the objective function for a balanced transportation problem can

always be obtained with a flow regime having flow on at most M + N - 1 arcs. This simply reflects

the fact from linear programming theory that an extreme point solution has flow on M + N - 1

arcs, if the solution is non-degenerate [9], and that an optimal solution can always be found at one

of the extreme points (a degenerate solution is one in which distinct subsets of demand nodes are

supplied by distinct subsets of supply nodes). If the solution is degenerate, there will be fewer arcs

with flow on them. For example, if N :> M, then in the extreme degenerate case each supply node

provides flow to a disjoint subset of the demand nodes. This means that each demand node has

exactly one arc with flow on to it, so that precisely N arcs have flow. If N < M, then the extreme

degenerate case is when each supply node has exactly one arc with flow, giving M such arcs.

When interpolating from f_2h to f_h, each coarse demand node generates two fine grid demand

nodes and the optimal solution to the M x 2 subproblem has M + 1 arcs with flow, in the

non-degenerate case. If the subproblem solution is degenerate, then M arcs have flow. If there are

N/2 demand nodes on gt2h, then after the interpolation the collection of subproblem solutions

(viewed as the initial feasible solution to the f_h problem) will have flow on at least NM/2 and at

most (NM + N)/2 arcs, depending on how many subproblems are degenerate.

Thus, whenever NM/2 is greater than M + N - 1, (which is true for any long transportation

problem where M > 2 and N > 3), the collection of local solutions has too many arcs with flow to

be an extreme point solution to the fine grid problem, and is probably less than optimal. The local

relaxation scheme developed here is designed to reduce the number of arcs with flow for the fine

grid problem, which will generally have the effect of moving the global solution toward an optimal
solution.

The mechanism by which we do this is cycle removal. Since there are M + N - 1 arcs in a

spanning tree over M + N nodes, and the addition of a single arc (or more) to a tree results in a

graph with at least one cycle, then for most problems, the interpolation process will introduce

cycles. We note that while this has been developed in the setting of the entire _collection of local

solutions, it is also true in a pairwise sense. That is, each of two M x 2 local solutions will have

either M + 1 or M arcs with flow. Viewing the pair as a solution to an M x 4 problem, we observe

that the combined solution will have at least 2M arcs with flow. If M > 2 this equals or exceeds

the M + 3 arcs with flow that would be present in an extreme point solution.

To illustrate this, consider the possibilities when two 3 x 2 local solutions are combined into a

3 x 4 solution, as shown in Figure 5. In a), two non-degenerate solutions are combined. Numbering

the demand nodes of the combined problem clockwise from the upper left and the supply nodes

from top to bottom, we observe that there are three cycles in the combined solution

(SI,D3, S2,D1,S1), (Sl,D3, S3, D4,S2, Dl,81), and (S2, Da, S3,Da, S2). In b), a degenerate solution

is combined with a non-degenerate solution, yielding a combined solution with one cycle. In c), two

degenerate solutions are combined into a solutionthat has no cycles, while in d), two degenerate

solutions are combined into a solution that has one cycle.

A reasonable candidate for a local relaxation process is to adjust the flow in the initial solution

produced by the interpolation process, so that cycles are removed and the objective function is

reduced. The effect of this procedure is to adjust the locally optimal flows which result from

interpolation so that they are more nearly optimal in the global problem.

71

! -

.) b)

Figure 5: Combining tu,o 3 x 2 solutions iTzto a 3 x 4 solu-tion. Folir t_pical eases are .,hown.-

Cycles are detected in the algorithm using a depth first search (DFS'). The DFS proceeds as

follows:

- 2 DepOt Fi stAlgorithm r , carch "

1. Initialize all nodes with DFS number O, to indicate they have 7_ot yet been visited.

2. Start at any node. Assign this" nod_ a DFS number of I, and defin_ node 0 to be the

predecessor of this node.

,3. If any node adjaceT_t lo the current node has been previously c@ited, and hal a DFS number .

lower than the predecessor of the current node, then the path from that node through th_

current node and back is a cycle.. Stop DFS and call the cycle removal routine.

4. If no adjacent ,o&s haw lower DFS numbers, then. look for any adjacrfd nodes which haw

not been visited. If lhcre are any unvisited adjacent nodes, idet_tify th_ current node as the

predecessor of the unvisited node. make the unvisited node the current node_, aT_d assign th_

current node a DFS _tumb(r equal to the DFS number o.f it_ predeccssor plu., I.

5. If there are no u n.visit_d nodes adjacent to the current node, mak_ the predecessor of th(

cur r_nt node the current no&. If th(current iwde is no& O, stop. Olhcru'is_. return to st_p 3.

Once a cycle is detected, a cycle removal algorithm is used to adjust the flows. The technique is

illustrated in Figure 6. The effect of a unit increase in flow in the clockwise direction around the

cycle is determined by adding together the costs of the arcs whose flow increases and subtracting
the cost of the arcs whose flow decreases. The change in objective function value per unit change in

flow in one direction will be the negative of the change in the opposite direction. An example is

shown in Figure 6, with the initial flow regime on the left, and the flow after cycle removal on the

right. The supplies and demands are shown in the boxes and circles, while the numbers in

parentheses above each arc give the cost and flow for that arc. For example, the cost c34 is 5, while

72

$1

o3

S1

D4 _ _D3
$2[qT_ / (_2)

D1 @ (5, 3,9)

__D2

03

Figure 6: An initial solution with a cycle (hfl), and the improved .flow regime after cycle remot, al

(right). The numbers in parentheses above each arc are" (e4_,x,_).

there is initially 3 units of flow on that arc. A unit increase in flow clockwise around the cycle

(beginning at Sa) will cause a change in the objective function value of 4 - 6 + 3 - 8 + 5 - 6 = -4,

a net decrease. A unit increase in the counter-clockwise direction therefore yields 6, a net increase

in the objective function. Clearly, increasing the clockwise flow is profitable, so flow is increased in

this direction. Flow values will thus be increased for Xls, x22 and xs4, while flow is decreased for

x2s, xn, and x14. That is, flow is increased on the arcs in the cycle which point in the profitable

direction, and decreased on the the other arcs, until one of the decreasing arcs reaches zero flow. At

this point, the cycle has been removed, and the value of the objective function has been decreased.

In Figure 6, increasing the flow clockwise around the cycle by four units breaks the cycle by

eliminating flow along x14, and reduces the value of the objective function by 16 units. The

improved flow regime is shown on the right side of the figure.

This technique is used as a local relaxation method by applying it to pairs of subproblems. Two

subproblems which are adjacent in cost space are joined to form an M × 4 problem, which is

inspected for cycles. If any are found, they are removed and the problem is searched again.

Two different methods for applying this technique are investigated. The first, termed total

relaxation, is to join adjacent pairs of M × 2 problems, remove the cycles, then repeat the process

by joining adjacent M x 4 pairs, removing the cycles, then to join M × 8 problems, and so on, until

the global problem for the current level is inspected and certified to be cycle-free. This approach is,

however, extremely expensive. The second approach only employs a local relaxation, and is therfore

true to multigrid principles. In this case, only pairs of M × 2 are checked for cycles. The gain in

speed from using this second method is significant, while the decrease in accuracy is negligible (see

Table 1 in the next section).

EXPERIMENTAL RESULTS AND CONCLUSIONS

The algorithm employed in this work is an FMG algorithm, using demand-weighting as the

restriction method for computing costs, interpolation by local optimization, and local relaxation by

cycle removal. The results are displayed in Table 1. While the multilevel algorithm performed well

on problems with only two or three supply nodes, the results for the five supply node problem are

unsatisfactory. The table clearly indicates that relaxation by cycle removal is as effective when

73

applied overa local area aswhen appliedglobally, and the computational effort required for local
relaxation is anorder of magnitude smaller.

Problem
Size

2 x 1024
2 x 1024
3 x 1024
3 x 1024
5 x 1024

5 x 1024

Relaxation Run Time % Above

Method Optimality

Total 1.210835 0.02 %

Local 0.131437 0.02 %

Total 1.15788 8.41%

Local 0.I08765 8.41%

Total 1.18411 58.4 %

Local 0.106392 59.7 %

We note also that this algorithm is not now competitive with the state of the art in network flow

optimization methods. No numerical data are available as a careful comparison has not been made,

however, some rough comparisons indicate that much remains to be done before a competitive

algorithm could be obtained.

The most signi_cant contribution of the currentresearch is the removal of the requirement for a

physical interpretation o_f the problem, and the dependence on a relationship between distance and
shipping costs. By mapping the problem into cost-space, a multilevel approach canine applied to a

much broader class of problems. Of course, there is a limit to the number of supply nodes which

this approach can handle, due to the increasing dimensionality of the problem. However, for

problemswithfew supply nodes, this approach can be helpful. We predict that further work will

yield the result that problems which have either a very small number of supply nodes, or a

geometrical interpretation, can be solved to within an acceptable degree of optimality using a

multilevel approach. However, problems which do not meet either of these criteria probably cannot

be solved with currently known multilevel methods.

Further Research

An algorithm analogous to the full approximation scheme (FAS) should be developed. In the

current work, we were unable to find an effective method of extracting a cor_'_ction from the

solution on 122h and applying it to the approximation on f_h while still maintaining feasibility.

Instead, we compute the solution on _2h and use interpolation to replace the-Solution on 12h. Since

a direct analog to the residual in a PDE is unknown for in an optimization problem, FAS is likely

the method of choice, however, the difficulty mentioned above must be overcome.

Another possibility for improving this algorithm is to begin the procedure by overlaying the

cost-space with a regular M-dimensional grid. The first step of the restriction process would then

be to map the demand nodes from their natural irregularly spaced positions in cost-space to the

regular grid points. Later, the final interpolation step would be to transfer from the regular grid

back to the original demand points. This approach overcomes a shortcoming in the curre_nt

algorithm, which _ag_gre_gates demand nodes which are closest in relative distance in cost-spa_, :

regardless of the absolute distance between-the--m.-in using a-regular grid, a clemem(i node On _2h"

would reflect only the demand at nodes a distance of 2h or less away from it. Another important

potential advantage is that the work on each coarser level is reduced by 2 -M, instead of by one half

as in the current research. If the regular grid approach proves worthwhile, then it could be

74

extendedto a fast adaptivecomposite(FAC) grid approach. In a network optimization setting, this
might be doneby overlayinga fine grid on thoseregionsof cost-spacewhere the density of demand
nodesis high, and a coarsergrid on the areasof low density. In this way, the flow to nodeswhich
aremost similar to their nearestneighborsin cost-spacewill receivethe benefit of a finer grid
spacing,while nodeswhich arenaturally moredistinct from their neighborswill only enter the
problemon the coarserlevels.

REFERENCES

[1] M. S. Bazaraa,J. J. Jarvis, and H. D. Sherali. Linear Programming and Network flows. John

Wiley and Sons, 1990.

[2] Dorit Ron. De_,elopment of Fa.st N_mT.crical Soh, ers for Probhms i7_ Optimization and Statistical

Mechanics. PhD thesis, Weizmann Institute of Science, 1987.

[3] Achi Brandt, Dorit Ron, and D. J. Amin. Multi-level approaches to discrete-state and

stochastic problems. In W. Hackbusch and U. Trottenberg, editors, Multigrid methods II

(Proceedings, Cologne 1985), Lecture notes in mathematics 1228. Springer-Verlag, 1985.

[4] Ron Kaminsky. Multilevel solution of the long transportation problem. Master's thesis,

Weizmann Institute of Science, 1986.

[5] B. Nilo. The transportation problem: a multi-level approach. Master's thesis, Weizmann

Institute of Science, 1986.

[6] P. H. Zipkin. Aggregation in linear programming. PhD thesis, Yale University, 1977.

[7] P. H. Zipkin. Bounds on the effect of aggregating variables in linear programs. Operations

Research, 28(4):903-916, 1980.

[8] E. Balas. Solution of large-scale transportation problems through aggregation. ORSA, 1965.

[9] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. John Wiley and

Sons, 1988.

75

Hsin-Chu Chen

Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, LA

r_

N94-2S679
VECTORIZATION AND PARALLELIZATION OF THE FINITE STRIP

METHOD FOR DYNAMIC MINDLIN PLATE PROBLEMS *

f- is-

Ai-Fang He

Department of Mathematics

Illinois State University

Bloomington, IL

SUMMARY

The finite strip method is a semi-analytical finite element process which allows for a discrete

analysis of certain types of physical problems by discretizing the domain of the problem into finite

strips. This method decomposes a single large problem into m smaller independent subproblems

when rn harmonic functions are employed, thus yielding natural parallelism at a very high level.

In this paper we address vectorization and parallelization strategies for the dynamic analysis of

simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in

memory access during the assemblage process. The vector and parallel implementations of this

method and the performance results of a test problem under scalar, vector, and vector-concurrent

execution modes on the Alliant FX/80 are also presented.

INTRODUCTION

More and more parallel computers have been developed and made available to the engineering

and scientific computing community in recent years. To take advantage of current and future

advanced multiprocessors, however, a great deal of efforts remain to be made in the search for effi-

cient and parallel implementations. In this paper we address both the coarse-grain and fine-grain

parallelism offered by the finite strip method (FSM) for the dynamic analysis of Mindlin plate

bending problems and present our vector and parallel implementations on multiprocessors with

vector processing capabilities. FSM, first developed in the context of thin plate bending analysis,

is a semi-analytical finite element process [6, 22]. This method allows for a discrete analysis of

*This work was supported by the U.S. Department of Energy under Grant No. DOE DE-FG02-85ER25001
while the authors were with the Center for Supercomputing Research and Development, University of Illinois at

Urbana-Champaign.

PAGE • INTENTIONALLYBLANK

PRIP-._DING PAGE BLANK NOT FfLMED

77

x Oy, my

z

Ox, mx wi p

Figure 1: The coordinate system and sign convention.

certain types of physical problems by discretizing their domains into finite strips, involving an ap-

proximation of the true solution using a continuous harmonic series in one direction and piecewise

interpolation polynomials in the others. Because of the orthogonality properties of the harmonic

functions in the stiffness and mass matrix formulation, FSM decomposes a problem, when appli-

cable, into many smaller and independent subproblems which yields coarse-grain parallelism in an

extremely easy and natural way.

Although not as versatile as the finite element method, FSM has been applied to a wide range

of plate, folded plate, shell, and bridge deck problems [4, 6, 7, 8, 10, 18] because of its efficiency

and simplicity. The performance induced by the coarse-grain parallelism of this method in a

multiprocessing environment has been shown in [9] for the static analysis of Mindlin plate problems

and in [20] for groundwater modeling. In this paper, we report and compare the performance

results of our implementation for the dynamic analysis of a simply-supported rectangular Mindlin

plate using scalar, vector, and vector-concurrent execution modes on an Alliant FX/80.

THE PROBLEM

In this section we describe briefly themathematical modeling of Mindlin plate problems [17].

Let f_ be the space domain in _2, F the boundary, and T the time domain. Let also the stress

resultants, generalized strains, displacements, dynamic surface loadings, and inertia forces be

denoted respectively by s, r, d, p, and q:

S Mxy

Qz

Qy

, r_

_32

"/y

"_xy ,

%z

"Yuz

[w][p]d= 0_ , p= m_ , and q= _ph30"_

5ph%

where p stands for the mass density (per unit volume), h the thickness of the plate, and i) (v =

w, 0_, or 0u) the second derivative of v with respect to time t: _ = 02v/Ot 2. The subscripts x, y,

and z above represent the directions in the Cartesian coordinate system. The sign convention for

the displacements and external loadings is shown in Figure 1. Neglecting the damping effect of

the plate, the differential equations which govern the state of stress resultants, generalized strains,

and displacements in an elastic plate can be expressed as

78

1. Equilibrium equations: LTs + p + q = 0 in fl ® T, subject to some appropriate

boundary conditions on F,

2. Stress-strain equations: s = Dr, and

3. Strain-displacement equations: r = L2d.

Here D is the material property matrix of an elastic plate. L1 and L2 are the differential operators:

/o o o o/o o/o]LT= 0 x 0 O/Oy --1 0

0 O/Oy O/Ox 0 --1

(1)

and

o o o o/ox o/oy]L_ = -O/Ox 0 -O/Oy -1 0

0 -O/8y -O/Ox 0 -1

where the superscript T denotes the transpose of a matrix.

(2)

For orthotropic material, the matrix D takes the form

D Dxy

oLVx

aG_

(3)

where D_, Da, ..., G_ are the standard fiexural and shear rigidities of plates and a is a modification

coefficient to account for the deviation of shear strain distribution from uniformity [4] (a = 5/6 for

rectangular cross section; see [21, p. 371]). The rest of the entries in D are zero. If the material

is isotropic, then the nonzero entries take the following values:

Eh 3 1 - u Eh

Dx = Dy -- 12(1 - u2) ' D1 = uD_:, Dxu - 2 D:_, and G. = a u - 2(1 + u)

where E, h, and u represent the material modulus, plate thickness, and Poisson's ratio, respec-

tively. The total potential energy of the plate due to the dynamic surface loading p [17, 16, 14]

can be written as

t 1 dFt) dt:/o a (4)

where a = Od/Ot and A = diag [-ph, _ph 3, _ph3], a diagonal matrix.

A STRIP ELEMENT FOR MINDLIN PLATES

We now outline the FSM formulation for the Mindlin plates using linear elements [4, 19].

We shall confine our discussions to rectangular Mindlin plate problems simply supported on two

79

Y

I ix I

1 2 3 i j

Figure 2: A discretized plate.

X

opposite sides. Figure 2 shows a rectangular plate discretized into n - 1 finite strips. The plate is

assumed to be simply supported on edges y = 0 and y = Lu. Shown in Figure 3 is the mid-plane

of a typical linear strip plate element of constant thickness h, whose local coordinate system is

denoted by (x I, yl, z _) where x' = x - xi, y' = y, and z _ = z. Let f/(_) be the domain of the e th

strip element and i and j be the two longitudinal edges (nodal lines) of the element, as shown in

Figure 3. Let d(_)(x,y,t) and ulo(t) be defined as

d(_)(x,y,t) = [w(x,y,t) Ox(x,y,t) Ou(x,y,t)] T, (x,y) • f_(_)

and

where w_(t) denotes the lth harmonic coefficient (amplitude) of wi(y, t) which is the displacement

along edge i, etc. For a linear strip element with ra harmonic terms specified, the approximation

to d(_) is given [4, 18] by
m

d(,)(x,y,t) _ ___Ft(x,y)u(,)(t) (5)
I=1

with
r N_St o o NjSt o o]

F I= . 0 NiSI 0 0 NjSt 0]o o N_G o o NjG

where St and Ct are the I th harmonic functions of y, and Ni and Nj are the linear shape functions

of x, defined by
br y br y

St = sin--, Cl = cos--,
Lu Lu

Ni=-1-r(_) and Nj= l+r(_)
2 ' 2

8O

I ° [

z/f/

Figure 3: A typical plate strip element.

_X t

where r(_), ranging from -1 to 1, is the natural coordinate in x-direction of the e th element.

Note that r(_) = -1 + 2 _--:--_- for the element shown in Figure 3. It should be observed that the
x i -_i

approximation to the displacement vector in (5) satisfies the simply supported boundary conditions

on edges y = 0 and y = Lv; i.e., w, 0_:, oW/Ox, O0,/Ox, and OOv/Oy all vanish on these two edges.

The dynamic surface loading on the e th element, p(_)(x, y, t), can often be approximated by the

sum of a harmonic series in the longitudinal direction as shown below

m

p(.)(x,y,t) .._ ___ Ht(y)pl_)(x,t) (6)
/=1

l ' m_]T The subscript (e)outside the bracketswhere H t - diag[St, St, Ct] and P(O = [qi mx (_)"

indicates that every component of the vector is associated only with the e th element.

Following the standard finite element proceclure and taking advantage of the orthogonality

properties of the harmonic functions, we obtain a linear algebraic differential system of block

diagonal form [5] depicted by:
Mfi+Ku=f (7)

where

M = M n ® M 22 O "'" O M mm and K = K n @ K 22 • "'" @ K mm

are block diagonal matrices of the same block structure. The vectors u and f are accordingly

partitioned,

[(u'7 (u 7 (u 7] [(f'7 (f 7 • (fmT]
In (7), the symbol ® stands for the direct sum of square matrices. M °, K °, u t, and fi are the

system mass matrix, system stiffness matrix, system displacement amplitude vector, and system

load amplitude vector due to the lth harmonic mode, respectively. In the rest of the paper, we

81

shall drop the term amplitude and simply call u _ fit) the I th system displacement (load) vector

for brevity. M u is assembled from the strip mass matrix M n K u from the strip stiffness matrix(e),

Klte), and ft from the strip load vector f_e) where

Mll*) =/gt (r')TArtdgt(e)' I= 1, m, (8)
(e)

KU(e) = ff_(e)(L:Ft)TD(L2rt)dft(e), l= 1, m, (9)

f/e) = ffl(_)(r')THlpi_)dft(e)' l= 1,_ rn. (10)

For a plate discretized with n nodal lines, K u and M u are square matrices of order 3n for each I.
II

(K(le) and M(_) are of order 6.) Once the entire system stiffness matrix K, system mass matrix
M, and system load vector f are assembled and the boundary conditions imposed, the remaining

major work is to solve the linear algebraic differential system (7) for u, fi, and ft.

PARALLEL AND VECTOR IMPLEMENTATIONS

Computational Procedure. Similar to the finite element method, FSM normally consists of

the following three main computational components: (1) the generation of strip stiffness/mass

matrices and strip load vectors for all strip elements, (2) the assemblage of the entire system

stiffness/mass matrix and system load vector, and (3) the solution process of the resulting linear

differential system Mfi + Ku = f. There are many step-by-step integration methods available

for solving the 2nd-order linear differential equations. Among them are the central difference,

Houbolt, Wilson 0, and Newmark fl methods. The central difference method is an explicit scheme

and the other three areirnplicit. Regardless of whether the method employed is implicit or explicit,

the procedure basically involves an initial calculation of an effective coefficient matrix and then

solves an effective linear system, after an effective load vector is formed, at each time step. In this

paper, we employ the Newmark integration method whose procedure is shown below, where a0,

ai, "" ", a7 are the Newmark integration constants [3, pp. 311]:

(1) initial calculation of the effective stiffness matrix I_ = K + a0M, the factorization

of I_ into LL T or LDL T form, and then for each time step tk+l, k = 0, 1, .-.

(2) forming the effective load vector t" at time tk+i: i'k+l ---- fk+l +M(aouk+a2flk+a3fik),

(3) solving the effective linear system at time tk+l: I_Uuk+i = t'k+i,

(4) calculating the acceleration and velocity vectors fik+l and ilk+l:

iik+l = a0(uk+l -- uk) -- a2£1k -- a3iik, £1k+l = Ok + a6flk + aTiik+l.

Note that the first step need he performed only once. The last three steps, however, must be

performed at every time step and therefore constitute the most time-consuming part in the entire

analysis.

82

To addressthe parallel implementationof FSM, weshouldfirst employthe decoupledstructure
of the system stiffnessmatrix depicted by (7), due to the orthogonality propertiesof harmonic
functions. This decouplingleadsto m independent sets of differential equations. Therefore, solving

(7) is equivalent to solving
MUfit+KUu t = ft, 1=1, m

where K u and M u, l = 1,..-, m, are block tridiagonal matrices with each block of order only

3 x 3 for the ordering shown in Figure 2. Furthermore, each M u consists of only three nonzero

diagonals. Since there is no data dependency among these m subsystems, not only can the

generation of Mlt_), KU(e), and f/e) and the assemblage of M it, K u, and fl for each harmonic term be

performed independently, but all the subsystems can be solved in parallel. In a parallel computing

environment with parallelism of two levels (considering vectorization as the first level), this special

feature leads FSM to a fully parallelizable approach when the number of harmonic terms matches

the number of processors. The following pseudo-Fortran code outlines its computational procedure

and indicates where parallelism can be exploited for vector/concurrent executions.

C -- Initial calculations

DO 200 I=1, m

DO 100e=1, N_
II II

Generate K(_), M(_), and f_)

Assemble K u, M u, and ft

END 100

Initialize u l, ill, and fit

Form I_ u from K u and M u

Factorize I_ u into LL T or LDL T form

END 200

C -- Calculations for each time step

DO until the last time step

DO 400I=1, m

DO 300e= 1, N,

Generate f_) and assemble fl
END 300

Form effective load vector _t

Solve I£Uu I = _t for u t

Calculate/i I and fll

END 400

DO 6001=1, rn

Accumulate displacements w for all strips

END 600

END DO

(concurrent, one CPU per iteration)

(to be discussed)

(vector)

(vector)

(vector)

(sequential)

(concurrent, one CPU per iteration)

(to be discussed)

(vector)

(vector)

(vector)

(sequential)

(vector-concurrent)

In the above pseudo-code, we neglect the step of imposing boundary conditions because they

can be performed in the generation step. The word concurrent inside the parentheses after the DO

83

statementsis usedto showthat all iterations in this loop maybeperformedin parallel, on the basis
of one processorper iteration ; and the word vector (or vector-concurrent) indicates computations

involved in the statement should be performed in vector (or vector-concurrent) mode whenever

possible and desirable. Whether a vector operation is desirable depends on the startup overhead

and the vector length of the operation.

Data Structure and Parallelization. To allow current code restructurers to automatically vec-

torize or parallelize certain computations, the Fortran statements related to that part of compu-

tations are usually written inthe form of DO loops or array constructs. Potential memory access
conflict must also be resolved. Therefore, the data structure of the code plays an essential role. In

our implementations, the system stiffness matrix K and system mass matrix M are represented

by two 3D arrays SK(l:nbk,l:n,l:m) and SM(l:nbm,l:n,l:m), respectively, where nbk (nbm) is the

semi-bandwidth of K (M), n the number of-equati0ns in eaci_ harmonic term, and m the number

of harmonic terms. It should be noted that in many situations, it is more benef[clal to [nterchange

the first two dimensions of both K and M, or to concatenate the first two dimensions into a single

dimension. The system load vector f is represented by a 2D array SF(l:n,l:m) and the vectors u,

u, and/i are similarly represented by 2D arrays SU, SV, and SA, respectively. This representation

allows parallelization across harmonic terms to be performed in the outermost loop. It also makes

the passing of references to subroutines an easy task.

To serve as an example, we consider the DO 200 loop where the computations inside the loop

are now translated into subroutines as shown below (the DO _00 loop follows the same approach).

CVD$L CNCALL ! an Alliant directive

DO 200 L = 1, m ! concurrent, one CPU per iteration

CALL GenAss (SK(1,1,L), SM(1,1,L), SF(1,L), L, n, nbk, nbm, ns, ...)

CALL Initialize (SU(1,L), SV(1,L), SA(1,L), ...) ! Initialize u0, %, and rio.

CALL Form (SK(t,I,L), SM(1,1,L), n, nbk, nbm, a0) ! Form I_ u and overwrite SK.

CALL Factorize (SK(1,1,L), n, nbk) ! Factorize I_ tt and overwrite SK.

END 2O0

where GenAss is a subroutine performing the task of the DO 100 loop in the previous pseudo code.

The other three subroutines are self-explanatory. In the above code, the argument ns denotes the

number of strips N, and aO is the Newmark constant a0. Using this approach, each processor will

have an identical local copy, automatically generated by the compiler, of the subroutines inside the

loop and its own reference space (via the index L) in locating K II, M u, and fl; yielding concurrent

execution for all harmonic terms because distinct processors will hold different values of L. This

not only prevents memory access conflicts in performing these tasks but also enables us to use a

single set of subroutines for all harmonic terms. The same applies to the other three subroutines as

well. Note that the index L is also passed to the subroutine GenAss as a local variable because it

is required for evaluating K{l_), M tt(_),and f/_) whose dimensions should be declared inside GenAss
and will become local variables.

=84

Vectorization. To address vectorization, we now turn to the computations for a single har-
monic term. First we note that the formation of the effective stiffness matrix I_" and effective

load vector _t, and the calculation of/i t and fit consist mainly of matrix-matrix (vector-vector)

additions and matrix-vector multiplications and are thus highly vectorizable. The vectorization

and parallelization of factorizing I_" and solving the linear system I("u I = _l have been under

intensive studies; see [13, 15, 23] for example. In this paper, we shall only focus on approaches to

u and the assemblage of K u. The generation of M(,)vectorizing the generation of K(_) tt (f_)) and

the assemblage of M It (fl) follow the same way and, thus, need not be discussed.

u The first, referred to asThere are two approaches to vectorizing the generation of K(_).
tl in vector mode. ThisVectorization within a Single Strip (VSS), is to generate the entries of K(_)

u for all strips can share the same storage ofapproach requires a minimal storage because K(_)

a single strip stiffness matrix, which is usually the case for most traditional finite strip or finite

element programs. The disadvantage is that the vector length available for vectorization is limited

by the order of the strip stiffness matrix, 6 in our case, which is rather small. In addition, the

generation step may not even involve any loop structure because most of the Fortran statements
u

may simply be assignment statements when the entries of K(_) are explicitly integrated. Therefore,

we resort to the second approach: Vectorization across Multiple Strips (VMS). This approach

generates the matrix entries component-wise across many different strips by employing the fact

that each strip matrix can be generated independently of the others. It, however, requires a

manual change in the data structure of the strip matrix in the computer program because current

code restructurers can hardly accomplish this task automatically. One way of achieving our goal

is to add one more dimension (preferably the first dimension) to the array that stores a strip

matrix so that the new array can store all strip stiffness matrices. For example, let EKL(I:6,1:6)

be the array used in the VSS approach for storing a single strip stiffness matrix and be shared

by all strips, one at a time. (For simplicity, we ignore the symmetry of the matrix.) When the

VMS approach is employed, we can simply change EKL to a 3D array, say EKL(l:ns,l:6,1:6), so

that the first dimension is associated with strip identifications, allowing vector execution to be

performed across strips. Although the change in data structure may impose some programming

difficulty in modifying an existing code, this approach indeed provides a very good way for both

vectorization and parallelization.

So far as the assemblage of the Ith system stiffness matrix K u is concerned, both VSS and

VMS are still applicable if potential data dependencies are avoided. Note that assemblying an
, K uentry of K(_) to has no conflict with assemblying the other entries of the same matrix to K u.

Vectorization obviously can be performed within any single strip matrix without any difficulty,

subject to the same disadvantage of short vector length as the case in the generation step. The

following Fortran code indicates where vectorization can be performed using VSS for assemblying

the stiffness matrix, where the rows of SKL store the upper diagonals of the band symmetric

matrix K II using the Linpack format [12] with the main diagonal of K II stored in the last row of
SKL.

85

DO 100 I = 1, NBK

SKL(I, I:N) = 0.0 (vector)

END 100

DO 300 K = 1, NS ! NS: No. of strips

Kl=3* (K-l)

DO 200J=1,6

J1 = K1 + J

I1 =NBK-J+ 1

SKL(II:NBK, J1) = SKL(II:NBK, J1) + EKL(I:J, J)

! Vector length too short.

END 2OO

END 300

! NBK (=6): Semi-bandwidth of K u

! Initialization. N: No. of equations of K I1

(vector)

Care, however, must be taken when the VMS approach is employed for assembling K u. This is

because different strips may have some nodes in common, which amounts to saying that the entries

of Klte) from different strips may contribute themselves to the same location in Ktt. Therefore, in
u

order to vectorize the assemblage of K u from K(e) across multiple strip elements, we must find

a way to avoid potential simultaneous updates of a common matrix entry. A general approach

to avoid this situation is to use graph coloring techniques to partition strips so that all strips in

the same group do not contain any common nodes. For our plate problems under consideration,

two colors are enough: one for odd strips and the other for even strips. When a natural ordering

is imposed as shown in Figure 2, however, a better approach to enhancing vectorization can

be employed by assemblying entries component-wise (or node-wise) across all strip elements as

shown below, assuming the i th strip starts from nodal line i to nodal line i + 1 and all strip stiffness

matrices are available.

DO 100 I = 1, NBK

SKL(I, I!N)= 0.0
END 100

DO 300J= 1,6

JS=3* (NS-1) +J

DO 2001= 1, J

(vector)

! NBK (=6): Semi-bandwidth of K u

] N: No. of equations of K u

[NS: No. of strips

IJ = NBK- J + I -

SKL(I_I, J:JS:3) - SKL(IJ, J:JS:3) + EKL(I:NS, I, J)

END 200

END 3OO

(vector)

Note that the array EKL now has one dimension more than the one used in the previous code.

The storage can be reduced t,y :Li_out half if symmetry of the matrix is taken into account. Finally,
we would like to mention that for a cluster-based multiprocessor with parallelism of three levels

like the Cedar [11], FSM is a perfect candidate because the decoupling at the system level offers

86

q(O

= q0(1- 0 < t < td
q0

q0 ----40 psi
0.05 see. t

td

Figure 4: The triangular loading (uniformly distributed on the entire plate).

a great deal of freedom for the problem to be solved using all levels of parallelism. For example,

we need exploit only the first two levels of parallelism in a linear system solver instead of three

because the highest level of parallelism can be employed across multiple linear subsystems.

NUMERICAL EXPERIMENTS

To demonstrate the effectiveness and parallelizability of FSM, we consider the dynamic Mindlin

analysis of a thin steel plate that is simply supported on all of its four edges and is subject to a

uniformly distributed triangular loading q(t) as shown in Figure 4. This plate, adapted from [2],

is 60 inches (L,) wide, 40 inches (Ly) long, and one inch thick throughout the entire plate. The

material of the plate is assumed to be isotropic with Young's modulus E = 30 x 106 ksi, Polsson

ratio v = 0.25, and a mass density of m = 0.00073 lb-sec2/in 4. The time step size At is set

to 0.00001 sec. In evaluating the strip stiffness matrices, reduced integration with one Gaussian

point is used to overcome the shear locking behavior [18]. The strip mass matrices are evaluated

using the consistent mass approach. The linear algebraic differential equations are solved using

the Newmark integration method with parameters a = 0.25 and (5 = 0.50 [3, pp. 311]. A banded

direct solver is used to solve the resulting linear subsystems in each time step.

In Figure 5, we compare the numerical solution of the displacement w at the center of the plate

using 16 Mindlin strip elements with the exact solution (Fourier series) derived from the Kirchhoff

thin plate theory. Eight harmonic terms are used in the finite strip approximation. From Figure

5, it is clear that the finite strip solution is in good agreement with the exact solution of the

Kirchhoff theory. The performance of this method on an Alliant FX/80 is shown in Tables 2 and

3. In Table 2, we compare the CPU time (all in seconds) consumed in the entire analysis, including

the generation, assemblage, and solution of the linear algebraic differential equations and finally

the calculation of the displacements. Three different execution modes: scalar (S), vector (V), and

vector-concurrent (VC) are considered. The compiler options [1] used for these modes are shown
in Table 1.

Table 2 shows the vector speedup (the ratio of the 1-processor CPU time spent under the

S mode to that under the V mode) for the entire process. As seen from this table, the vector

87

Displacement(inches)

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

16 elements, ; , , o o o : strip
I I I I

I I I I . .

_- _ ,.... r - - - q _ : Fourier ser)es

It I I I I .,, a/_l ,, ,, (Kirchhoff) |
I_4J__T_4, ___ i.... r-- -1....... -t

I I I

,-- -'i -

I I I

I I I

-I

' -,--tl--J-----I
I i I 1 I 1

i _lL ___2............ T--- i i i
I I I I I
1 i I I I I

I I I I I I
iI ii illl tl tl I I I r ii ii iI In Ill Illlil If II II It II It Illlltll II It II II lill IIIII

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Simulation time t (seconds)

Figure 5: Displacement at the center of the plate.

Table 1: Compiler options

Execution mode Compiler options Subprograms compiled

Scalar (S) -Og -AS -pg the entire program

Vector (V) -Ogv -AS -pg the entire program

Vector-Concurrent -Ogv -AS recursively-called subroutines

(VC) -Ogvc -AS others

Table 2: CPU time (in seconds) and vector speedup on the Alliant FX/80 using one processor.

Step Scalar (S) Vector (V)

177.1 137.1Solve LDLTu = t"

Compute i', fi, fi (Newmark)

Generate fl*) and assemble f

Initialization and I/0

91.0

42.7

25.3

12.4

1.72 1.70

Total 312.4 176.4

S/Vl
1.29

3.60

3.45

1.01

..I1"771

Remark

semi-bandwidth too small

mainly DAXPY operations.

using the VMS approach

no manual optimization

88

Table 3: Parallel performance under the vector-concurrent mode.

No. of processors k 1 2 4 8

CPU time in seconds 165.7 84.14 45.01 :_5.08

Concurrency speedup Sk 1.00 1.97 3.68 6.61

Efficiency Ek (%) 100.0 98.5 92.0 82.6

Concurrency speedup

I

I / s

Theoretical speedup v..,_'"
ii

Observed speedup ,
• I

1 2 3 4 5 6 7 8

Number of processors

Figure 6: Concurrency speedup on the Alliant FX/80.

89

speedups for the three most time-consuming parts: (1) solving I_u = [', (2) computing f, fl, and

/i, and (3) generating f_) and assemblying f are 1.29, 3.60, and 3.45, respectively. Note that

the semi-bandwidth of the system stiffness matrix is only 6 in this example, which is obviously

not long enough for a banded direct linear system solver to take advantage of vector instructions

in solving the linear system. The vector speedups for the other two parts, however, are very

satisfactory. It deserves mentioning that in generating f_) and assemblying f, we employed the

VMS approach which yields a much better vector performance than the VSS approach. Table 3

shows the concurrency speedup ,_,ck,defined to be the ratio of the CPU time spent under the VC

execution mode of the entire program using only one processor to that using k processors and

the efficiency Ek (= Sk/k), the ratio of the concurrency speedup Sk to thenumber of processors

k. Figure 6 plots the speedup against the number of processors used. As seen from Table 3, the

concurrency speedups observed using 2, 4, and 8 processors are 1.97, 3.68, and 6.61, respectively.

This impressive performance clearly indicates the parallelizability of FSM on multiprocessors when

the number of harmonic terms used matches the number of processors available.

CONCLUSIONS

The effectiveness and parallelizability of the finite strip method (FSM) for the dynamic analysis
of a class of Mindlin plates have been addressed and vector/parallel implementations presented.

The performance of this method on the Alliant FX/80 has also been tested using a rectangular

plate that is simply supported on all edges and is subject to a uniformly distributed triangular

loading. From the experiments performed, we have obtained concurrency speedups of 1.97, 3.68,

and 6.61 using 2, 4, and 8 processors, respectively. These speedups are satisfactory and very

encouraging. It clearly demonstrates the superiority of FSM in a parallel processing environment.

For vectorization, good performance has also been observed for the Newmark integration scheme

and for the generation/assemblage process using the VMS (vectorization across multiple strips)

approach. In summary, we conclude that, although vector performance during the solution stage

may be hindered by the small seml-bandwidth of the subsystems if a direct solver is employed, FSM

is highly parallelizable and, therefore, suitable for computation on multiprocessor or multicluster

computers. This is especially true when the problem requires a large number of harmonic terms
to yield accurate results.

References

[1] Alliant Computer Systems-Corporation, rX/FORTRAN P og .m,ne ' H_nd_ok, iniant Com-

puter Systems Corporation, Acton, Massachusetts, 1987.

[2] A. Assadi-Lamouki and T. Krauthammer, An explicit finite difference approach for the Mindlin

plate analysis, Computers _ Structures, Vol.31, No.4 (1989), pp. 487-494.

[3] K.J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

P. R. Benson and E. IIinton, A thick finite strip solution for static, free vibration and stability
problems, Int. J. for Numer. Meth. in Eng., 10 (1976), pp. 665-678.

[4]

90

[5] J.M. Canet, B. Su£rez, and E. Ofiate, Dynamic analysis of structures using a Reissner-Mindlin
finite strip formulation, Computers _ Structures, Vol.31, No.6 (1989), pp. 967-975.

[6] Y-K. Cheung, The finite strip method in the analysis of elastic plates with two opposite simply

supported ends, Prac. Inst. Cir. Eng., 40(1968), pp. 1-7.

[7] Y-K. Cheung, Finite strip method analysis of elastic slabs, ASCE J. of Mechanics Div., 94 (1968),

pp. 1365-1378.

[8] Y-K. Cheung, Finite Strip Method in Structural Analysis, Pergamon Press, New York, 1976.

[9] H-C. Chen and A-F. He, Implementation of the finite strip method for structural analysis on a par-

allel computer, Proc. 1990 Int'l. Conf. on Parallel Processing, Vol. III: Algorithms and Applications

(ed. P-C. Yew), August 1990, pp. 372-373.

[10] A.R. Cusens and Y. C. Loo, Applications of the finite strip method in the analysis of concrete box

bridges, Proc. Inst. Civ. Eng., 57-II (1974), pp. 251-273.

[11] E. Davidson, D. Kuck, D. Lawrie, and A. Sameh, Supercomputing tradeoffs and the Cedar sys-
tem, CSRD Tech. Rept. 577, Center for Supercomputing Research and Development, University of

Illinois at Urbana-Champaign, 1986.

[12] J.J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK User's Guide, SIAM,
1979.

[13] C. Farhat and E. Wilson, A parallel active column equation solver, Computers _ Structures, Vol.28,

No.2 (1988), pp. 289-304.

[14] D.G. Fertis, Dynamics and Vibration of Structures, John Wiley & Sons, New York, 1973.

[15] D. Goehlich, L. Komzsik, R. E. Fulton, Application of a parallel equation solver to static FEM

problems, Computers gJ Structures, Vol.31, No.2 (1989), pp. 121-129.

[16] K.H. Huebner, The Finite Element Method for Engineers, John Wiley & Sons, New York, 1975.

[17] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,
J. of Applied Mechanics, 18 (1951), pp. 31-38.

[18] E. Ofiate and B. Suarez, A unified approach for the analysis of bridges, plates and axisymmetric

shells using the linear Mindlin strip element, Computers _ Structures, 17 (1983), pp. 407-426.

[19] E. Ofiate and B. Suarez, A comparison of the linear quadratic and cubic Mindlin strip elements for

the analysis of thick and thin plates, Computers gJ Structures, 17 (1983), pp. 427-439.

[20] J. A. Puckett and R. J. Schmidt, Finite strip method for groundwater modeling in a parallel

computing environment, Eng. Comput., 7 (1990), pp. 167-172.

[21] S.P. Timoshenko and J. M. Gere, Mechanics of Materials, Van Nostrand Co., New York, 1972.

[22] O.C. Zienkiewicz, The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977.

[23] D. Zois, Parallel processing techniques for FE analysis: system solution, Computers _ Structures,

Vol.28, No.2 (1988), pp. 261-274.

91

I

/JT/J2

N94L 2 -G 0
DOMAIN DECOMPOSITION METHODS FOR

NONCONFORMING FINITE ELEMENT SPACES OF LAGRANGE-TYPE*

Lawrence C. Cowsar

Department of Computational and Applied Mathematics

Rice University

Houston, Texas

SUMMARY

In this article, we consider the application of three popular domain decomposition methods to

Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order

elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of

Smith, and the balancing method of Mandel applied to nonconforming elements are shown to

converge at a rate no worse than their applications to the standard conforming piecewise linear

Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the

existing theory for the conforming elements with only modest modification by constructing an

isomorphism between the nonconforming finite element space and a space of continuous piecewise
linear functions.

INTRODUCTION

We consider the convergence properties of domain decomposition methods applied to

Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order

elliptic problems. An isomorphism between the nonconforming finite element space with the

natural norm induced by the elliptic problem and a conforming piecewise linear space with the

Hl-seminorm is constructed. Using the isomorphism, we are able to apply the existing analysis of

domain decomposition methods for conforming elements to nonconforming elements with only

modest modifications. As examples of this technique, we show that. the operators arising in three

popular domain decomposition methods, specifically, tile additive Schwarz method of Dryja and

Widlund [1], the vertex space method of Smith [2], and balancing method of Mandel [3], applied to

nonconforming finite elements have condition numbers that satisfy the same bounds as the ones

given in [4] and [5] for conforming finite elements.

The same technique was used in [6] and [7] to a,nalyze the rate of convergence of balancing
domain decomposition and the standard a.dditive Schwarz method for the dual-variable mixed finite

element formulation. Moreover, as a corollary of the analysis of Smith's method for the

nonconforming spaces presented in this paper, we have a, new bound for Smith's method applied to
mixed finite elements.

*This work was supported in part, by the National Science Foundation under Grant No. DMS-9112847.

pI_GEDING PAGE BLAiIK NOT FILMED GE INTENTIOi,,_ALLYBLANK
93

After the research for this paper was completed, the author was made aware of some related

work done concurrently by Sarkis [8]. In particular, the isomorphism used herein was independently

suggested by Sarkis for linear nonconforming elements. In [8], Sarkis constructs and analyzes

special coarse spaces such that when the overlapping additive Schwarz method is applied, the
condition number of the resulting operator is bounded by a constant times (1 + log(H/h))(1 + H/a)

in both two and three dimensions. Here H and h are the characteristic sizes of the subdomains and

mesh, respectively, and 6 is a measure of the overlap of subdomains. The notable characteristic of

Sarkis' bound is that the constant is independent of jumps in the coefficients across subdomain

boundaries. If the techniques of this paper were used to derive bounds that were independent of

the jumps in coefficients, the resulting bound would include one log factor in two dimensions using

[1, 9], but two logs in three dimensions using [5, 10, 11].

The remainder of this paper is divided into six sections. In the next section, we set some

notation, formulate the nonconforming problem, and construct an equivalent representation in

terms of the nodal values. In Section 3, we construct an isomorphism between the nonconforming

space and a continuous space of piecewise linear functions. The isomorphism is used in Section 4 to

analyze the rate of convergence of tile Dryja-Widlund additive Schwarz method. In the last three

sections, we consider the substructuring methods of Smith and Mandel applied to the

nonconforming problem.

PRELIMINARIES

We consider the following self-adjoint, nniformly elliptic problem for p on the polygonal domain

Ft C IR '_, n = 2, 3, with boundary 0f_:

-V.AVp= f in ft, p=0 on 0f_, (1)

where A is a uniformly positive definite, bounded, symmetric second order tensor, and f E L2(F/).

The uniform ellipticity of (1) implies the existence of positive constants c,, c* such that the

following bound holds:
_._r_ _<_rA(:,:)____c._r_ v_ E n_,V:_' E ft. (2)

In order to set a length scale, we assume that the diameter of _ is one. We introduce a two level

quasi-regular triangulation of fl: a division first into subdomains {fl;}_ with diameter O(H), and
a refinement of the first into elements with diameter O(h). Following [12], define the scaled Sobolev

norms

where

= 1_1_,_,+ _/_,_, = 1_,t,/_,,o_,+ _11_,tt0,0_,11ll,,_, tl..lt_o,n,,tl,,.ll_ ; 1 2

11_11o,_, I,¢4:r)1_d_,
t

I,__ =£Ii,n, Iv_(_)l _,Ix,
t

tl,ll0,0_,=. _,

dt ds.

Let N'(Ft) be a finite dimensional nonconforming finite element space of Lagrange-type defined

subordinate to the triangulation T that vanishes at all degrees of fieedom on 0Ft. Since N'(Ft) is of

Lagrange-type, the elements in N'(f_) cnay be expressed in t.erms of a nodal basis, and we may

identify an element in N'(_) with the values it attains at tile nodal points. For convenience, we

assume that the subdomains and tile elements are triangular in two dimensions or tetrahedral in

three dimensions. Extensions to other shape regular decompositions are straightforward.

We consider the problem of finding Ph ¢ N'(_) such that

t

d(p,,,q,,) =].

where d is the generalized Dirichlet form:

fqh dx Vq_, E N'(fl), (3)

d(pn, qh) = da(p,,, qh),
da,(p,_, q,,) - _ f AVph" Vqh dz.

rET, rCfl'

We now introduce several conventions used in this paper. Ill this paper, we shall only be

concerned with the solution of this finite dimensional problem, and will henceforth drop the "h"
subscript.

Having defined a parent finite element space of fimctions A'(fl) with a nodal basis and a set

f_' C f_, we will simply write X(fY) for the restriction of ,V(f_) to fl', i.e.

.v(fl') = I¢ E ,V(n)),

By an abuse of notation, we consider an element _b E ,V(f_') also to be an element of X(f_) by
setting q5 to zero at all nodes outside of fl'.

We will write Qa -_ Q2 if two quadratic forms Qj and Q2 with the same domain 7) are

equivalent, i.e. if there exists constants ca, c2 > 0 such that

In what follows, C will be used to denote a generic constant that may not be the same from one

line to the next. This constant, as well as the constants involved in the equivalence of quadratic

forms, will always be independent of h. and H, but can depend on the constants in (2), the shape

regularity of the subdomains, the degree of the nonconforming finite elements, and the regularity of
the triangulation.

To conclude this section, we prove a lemma that provides an equivalent quadratic form for d(., .)

in terms of the nodal degrees of fl'eedom. The proof of this lemma was suggested by Joseph Pasciak

in the context of the mixed finite methods considered in [6, 7].

Lemma 1 Let _' C_ _ be the union of cleme, nts ofT. Aud l¢:t A(a:) = o@t')A(x), where a is a

positive, piecewise constant function with valve c*_ on r E T. Thr.n for every p E N'(fl'),

dn,(p,p) _- _ c_,lrt l-#" _ (t'(,-n)- 1,(%)) 2. (4)
r E T, zu,,les :

r C fl' ni,nj E r

The constants that appear in the dqfinition of the equivalence do not depend on the constants in (2),
but rather on constants that arise when A is replaced by A.

Proof. The local kernel of d_(., .) in N'(r) is exactly the constant functions on r since for

p E N'(r)

d_(p,q) =0 gq E _r(r), _ V t,=0,

95

Primary Vertex /

Secondary Vertex ,/

/.

Figure 1: Refinement of the 2D P-1 element and a partial refinement of the 3D P-1 element.

Hence, (d,(., .))1/2 is a norm on N'(r)/IR. Since all norms are equivalent on finite dimensional

spaces, we see that
d,(p,p) _- _.lrl 1-2/'' _ (p(ni) -- p(nj)) 2,

nodes :

hi, n I E 7

by a simple scaling argument. The proof is completed by summing over the elements of 7- in f_'.

A CONFORMING EQUIVALENCE

0

In this section, we construct a conforming space that is isomorphic to N'(f_) using the techniques

in [6, 7] and recall some basic properties about the isomorphism.
Given an element r E T, let T, be a subtriangulation of r such that the vertices of the

subtriangulation include the vertices of r a.nd the nodal points in r pertaining to the degrees of

freedom of A/'(r). Every element in the new triangulation should have at least one vertex that

corresponds to a nodal point of N'(r). Moreover, the subtriangulations should be constructed in

such a way that the union of subtriangulations gives rise to a refined quasi-regular triangulation of

fl which we denote by 'T = U 7-,"

rET

A vertex of T will be called primary if it was a nodal point corresponding to a degree of freedom of

N'(Ft); otherwise, we call the vertex secondary. We say tha.t two vertices of the triangulation "]- are

adjacent if there exists an edge of 7" connecting the vertices. An example of the subtriangulation of

the P-1 element that has nodal degrees of freedom at the center of its edges (faces) is given in

Figure 1.

9_

Let Uh(f_) denote the space of continuous piecewise linear functions subordinate to the

triangulation "]- that vanish on 0ft. For fl' C fl, a union of elements, define Uh(f_') by restriction, i.e.

u,,(fl') = {,,la, 1,, E U,,(_)}.

Since the functions in Uh(fl') are naturally parameterized by the values they attain at the

vertices, we can define a pseudo-interpolation operator in' into Uh(f_') for any function ¢ defined at

the primary vertices contained in f_' by

O, if x E 0f_' C/Of_;

_'¢(x) =

¢(x), if x is a primary vertex not in Off' M Off;

The average of all adjacent primary vertices on the boundary

of fl', if x is a secondary vertex in oqfl ' \ Oaf;

The average of all adja.cent primary vertices, if x is a secondary

vertex in the interior of 12';

The continuous piecewise linear interpolant of the above vertex

values, if x is not ar vertex of 7-.

(_)

Since _rn' is well defined for any function defined at the primary vertices, by an abuse of notation,

we can understand _rn' both as a map from N'(_') into Uh(_') and a map from Uh(f_') into itself.

For any f_' that is the union of elements in T, let brh(_') C Uh(_') denote the range of _rn'; that is,

_rh(fl') = {'$ = _q'q,q E N'(f_)}.

We now prove that _': A/'(ft') _ Dj_f_') preserves the norm induced by the bilinear form da,(', ")

on ¢¢(s2') and the Ha-seminorm on Uh(fl')_ Since ._a' is a. bijection between N'(f_') and _'h(f_') by

construction, this proves that N'(ft') and Uh(f_') are isomorphic.

Theorem 2 Let _' C f_ be the "union oj" cl_:mcnts. Then for all p E N'(f_'),

da'(t',P) _-I _rn t'll,a" (6)

Proof. This proof is an expanded version of the proof given in [7]. Recall that for ¢ E Uh(Ft'),

I¢l_,a,_- }2 fit '-_#' _ (¢(v,)- ¢(_j))_. (7)
_" E _, vertices :

_" C _' vi,%, E r

By virtue of Lemma 1 and Equation (7), it is enough to show that

lrl 1-_-/" _ (s'(ni)-t'('b)) 2= _ Irl '-w'
r { 7-, nodes : r E 'T, verlices :

r C fl' ni,n I E r r C fl' vl,vj E r

Since vertices of 7", contain the nodal points of 7 and p = ._n'p at these points, we have

nodes : _E_r vertices :

ni,r b E _" vl,vj E _"

((_'p)(_,) - (2_'v)(.j)) =. (8)

97

wherethe constant is controlled by the regularity of the subtriangulation. Hence,by summingover
the elementsof 7" in fY, weconcludethat the right hand sideof (8) dolninates the left hand side.

To provethat the left hand side dominatesthe right, wenote that the differencesin the right
hand side areof three types: the differenceat two primary vertices, the differenceat two secondary
vertices,and the differenceat a primary and a secondaryvertex. Sincep and :_rn'p agree at primary

vertices of "]', the difference at two primary vertices occurs as a term in the left hand side. For two

secondary vertices vl, v2 in an element T E "Y containing a primary vertex vp, we see that

Hence, it is enough to bound the difference at a secondary and primary vertex by terms in the left

hand side of (8).

Let v,+a be a secondary vertex with adjacent primary vertices vx,..., v,,, and let pj = p(vj).

Noting that for j = 1,...,n

= _ (,_j)= _ pj,
'/'/ j=l l/ j=l

we see that

- (v,)): " - <- z(,,J-
----- j=l

by the Cauchy-Schwarz inequality. The proof is completed by summing over all triangles of 7". The

number of such terms, and hence the constant iri the bound, is controlled since the regularity of the

mesh implies that there is an a priori maximum number of adjacent elements that can share a

secondary point. 1-1

Using the techniques in the proof of Theorem 2, the following lemma is easy to prove.

Lemma 3 There exists a constant C depending only on th,e regularity of the trianguIatiotL 7- and

the degree of the noncortforming space such th_tt .for arty fY C f}, the: union of elements of 7-,

I-_'¢l,..n,_<c1¢1_.._,v¢ c u,,(fr), k = o,_. (9)

THE DRYJA-WIDLUND ADDITIVE SCHWARZ METHOD

The presentation in this section and the next follows the treatment of Schwarz methods given by

Dryja and Widlund in [4]. We concentrate only on the additive Schwarz methods with exact solves.

The convergence rate of the multiplicative Schwarz method may be estimated in terms of the same

quantities (see [13]) and is easily worked out. Extensions to inexact solves are likewise direct.

Recall that the additive Schwarz method with exact solves fox (3) is completely determined by a

decomposition of the finite element space N'(f_) = H0 + jV'_ + ... + HM. For each subspace Af,,

define an operator Pi : N'(f}) _ .Af/ by

a(p,p,q) = a(.p,q) vq _ M. (lO)

9$

The additive Schwarz algorithm with exact solves for (3) involves the solution of

M M

Pp= f, P- _"_Pi, f =- _-_fi, (11)
i=0 i=0

where fi C N'i is defined by

d(fi, q) = /a fqdx VqEN'i.

Abstract bounds on the condition number of P have been derived in terms of two quantities, Co

and the spectral radius of $, which we now define. Let Co be a constant such that for every p E .hf
M

there exists a representation p = Ei=0 pi with pi E ,_ satisfying

M

d(pi,pi) <_ Cod(p,p). (12)
i=0

Let p(_') denote the spectral radius of g" = {e;;}, the matrix of strengthened Cauchy-Schwarz

constants; that is, eia is the smallest constant for which

Id(pi,pj)l <_ eijd(pi,pi)½d(pj,pj) ½ Ypi E N'i, Vpj E N'j, i,j k 1. (13)

The next theorem, due to Dryja. and Widlund [14], bounds the condition number of the additive

Schwarz method in terms of Co and p(g)

Theorem 4 The eigenvalues and flu_: condition r_j_b_" _(P) of P satisJy

)_,m.(P) > Co I , /_max(P) --_ (P(_) "_- l), n(P) _< Co(p($)+ 1). (14)

To construct the decomposition of N'(f/) to be used in our application of the additive Schwarz

algorithm for nonconforming elements, we first create an overlapping decomposition of the domain

f/by extending each subdomain fli to a larger region fYi which is also the union of elements of T.

We characterize the extent of the overlap of the partition {f/}}M by (5, where

5 = rain dist(Of/, \ 0f/, Off', \ Off).
i=l,_.M

{fli}_=, gives rise to a nat,_ral decomposition of A/'(f_) by letting _ C N'(f/)The decomposition , M

denote the set of functions that vanish at all nodes in the closure of (fl \ f/}). In order to provide a

mechanism for global exchange of information between subdomains so as to enhance the rate of

convergence, we also use a low dimensional space defined by

N0= {p e x'(a) lv= zV¢,¢ c v.(a)},

where Z x is nodal interpolation into N'(fi), and Uu(fl) is the space of continuous functions that are

linear on each subdomain f/i. Note that the subspaces for the nonconforming space are exactly the

nodal interpolants of the standard decomposition of the conforming space Uh(_), namely,

Uh (f/) N H(_ (f/:).

In the following lemma we recall the crux of tile proof due to Dryja and Widlund (Theorem 3 of

[4]) that the Schwarz method applied to the conforming Galerkin discretization has a condition

number that is O(1 + (g/5)).

99

Lemma 5 For every ¢ C Uh(Ft), there exists a decomposition ¢ = E_i=o ¢i with ¢0 E UH(Ft),

¢i C Uh(Ft) N H_(Ft_), 1 < i < M and a constant C independent of h, H, and 5, such that

(2_l¢,l_,a -< C 1+ I¢[_,_. (15)
i=0

We now show that the application of the Schwarz method to the nonconforming space converges

at the same rate.

Theorem 6 The condition number x_(P) of the additive Schwarz operator P defined by (11) induced

by the decomposition N'(f_) = .Mo +. i. + N'M of ttie nonconforming finite element space satisfies

a(P) <_C(I+H)

The constant C is independent of h, 5, and H.

Proof. The verification that the largest eigenvalue of P is bounded by a constant is standard.

Since d(p_, pj) = 0 for pi E N'_, pj E N'j with Ft_ M Ft} = _, P may be written as the sum of an a

priori bounded number of disjoint projections. Since projections have unit norm, a constant bound

on the largest eigenvalue of P is immediate. See, e.g., Lemma 3.1 of [2].

For p E N'(Ft), let (:_p)i denote the decomposition of :In l, E Uh(Ft) arising in Lemma 5, and set

Pi = ZlV'((_fllP)i). It is easy to check that p, C 32/ and p = }zM0 p,. Using Theorem 2 and Lemma 3,

we see that for i = 0,..., M, _ ::

d(p,,p,) <_ _<Cl(Y%), 1,i1"

Summing and applying Lemma 5 and Theorem 2, we conclude that

dO,,,p,)<_C -<c 1+ 12'ph,a< c 1+
i=0 i=O

Hence, C0 in (12) is bounded by C (1 + H/5). An application of Theorem 4 completes the proof. [3

SUBSTRUCTURINC DOMAIN DECOMPOSITION

The remaining two methods considered in this paper are domain decomposition methods applied

to a reduced problem involving only the degrees of fi'eedom on the internal interfaces of subdomains

F= MU_=10ai \ OFt. Following [41, we recall the construction of the reduced problem. Since N'(f_) is

of Lagrange-type, we may associate with functions p, q E N'(f_) the vectors of values they attain at

the nodes. Let x and Y denote the vectors of nodal values of p and q, respectively, and x (i), 9 (0 the

subvectors of degrees of freedom in _i: Let D i0 den0te {lie local stiffness matrix arising frorn=i

da, (., .), and let D denote the global stiffness matrix, i.ei = = :

x(i)TD(i)y(i) = da,(p,q), :,:vDy = _ x(i)rD(i)y(O = d(p,q).
i=1 ,...,M

= : r-

For each subdomain, we can partition the degrees of freedom x (i) into two sets, the ones related to

nodes on the boundary of f_i denoted x(_), and the ones corresponding to nodes in the interior of f_i

denoted x_ i). Such a partitioning induces a partitioning of D (i) given by

x(i)T D(i)y(1) = xg) _'II _IB• r)(1)T r)(i) y(i) ._'IB _'BB

The interior unknowns of each subdomain may be eliminated in terms of the boundary unknowns.

The resulting matrix, S, is the Schur complement with respect to the interface unknowns defined by

xTSyB= E X(iB)TS(i)Y(B)' where S (i) n(i) n(i)Trn(i)'-'n (/)
"BB -- "'IB I,L'll] "_'IB"

i=l ,...,M

It will be convenient to work with the bilinear forms induced by S and S (0, and so we define

..(i)Tc(i)..(i)• q) = . , q) = ,.,. •

For a function p E .A/'(f_), we note that unlike conforming spaces, the restriction of p to the

interfaces, PIt, is not solely determined by the nodal values on F since A/'(f_) is nonconforming.

Hence, we are careful to understand Af(F) as a subset of N'(fl) parameterized by the nodal values

on F consisting of the discrete harmonic extension of the nodal values to the interior of the

subdomains. Specifically, if p E N'(F) has the vector of nodal values x(_) on 0fh, then Pin, is the

function associated with the vector of nodal values (x_ 0, x(_)) T where x_ i) satisfies

D(O..(i) r_(i) (1)
II'Cl ---- --IJIBXB •

A linear functional g is easily constructed such that finding p C N'(F) satisfying

s(p,q) = g(q) Vq • Af(F) (16)

is essentially equivalent to (3).

We now construct a conforming space of functions that is isomorphic to A/'(F) with the norm

induced by the bilinear form s(., .). Let Uh(F) denote the restriction of Uh(fl) to uM_ofi,. Since

functions in Uh(F) vanish on 0fl (because functions in Uh(fl) do), functions in Uh(I') can be

parameterized in the natural nodal basis by the values they attain at the vertices of "Y in F.

Analogous to (5), for F' the union of edges (and faces in 3D) in the triangulation T and 5 a

function defined at the primary vertices in F', define a pseudo-interpolant ._"¢ • Uh(l"') by

2"'¢(x) =

0, ifx•F'A0f_;

¢(x), if x is a primary vertex not in F' fl Of_;

The average of all adjacent primary vertices on r _ if x is a

secondary vertex on F';

The continuous piecewise linear interpolant of the above vertex

vaJues, if x is not a vertex of T.

(17)

101

Note that if r' = Oft', then _rr'¢ = (:_ra'_)lafV for all ¢ in A'(f_') that agree with ¢ at the nodal

degrees of freedom of Off'.
Since :_re' is well defined for any function defined at primary vertices, by an abuse of notation, we

can understand :_' both as a map from N'(F') into Uh(P') and a map from Uh(F') into Uh(F'). We

denote the range of :_r' by
&(r') = c g,,(r')}.

The equivalences in the following lemma are a combination of the standard trace theorem and an

extension theorem for Uh(0f_i). In particular, the proof of this lemma given in [6] shows that the

space &(f_i) is rich enough to inherit the Extension Theorem of Widlund [15] from uh(f_d.

Lemma 7 For ¢ C Uh(O_,),

_ inf [l¢[ll,f./,, I¢ll/_,an, _- inf lOll,n,. (18)

¢lOn, = ¢ ¢1o_*,= ¢

Additionally, there exists a constant C independent of m_:sh parameters such that

I °a41k,on,< Cl@k,on,, e gh(afld, = 0, 1/2. (19)

The following theorem plays the role of Theorem 2 for the interface problem.

Theorem 8 For all p E N'(F),

s,(t,, p) _- l:_n'l'l_/2,on, • (20)

Proof. By a direct computation followed by an application of Theorem 2 and Lemma 7 noting

that _'h(fl_) = :_q'(X'(_,)), we see that

inf da,(//,fi) "_ tilt" l_ij_l_,f2, '_ 2- t 1/2,0fl,
si(p,p) = Feg(n,) _e.v'(a,)

P[ofl, = Pi PlOn, = P

D

SMITII'S VERTEX SPACE METHOD

Smith's vertex space method [2] is an additive Schwarz method applied to the interface problem

(16). The decomposition of N'(F) is constructed slightly differently in two and three dimensions. In

both cases, we first partition I" into overlapping subsets based on its decomposition as the boundary

of subdomains. In two dimensions, for each vertex Vj of F, let ['/' denote the set of points on F

that are less than a distance 5 fi-om Vj. For each edge Ei of 1-', let. F_' denote the interior of the

edge Ei. In three dimensions, for each vertex 1/_, each edge Ei, and each face Fk of F, define F V_ as

above, let F_ k denote the interior of the face Fk, and let F f' denote the set of all points in strips of

width 5 on all faces which share the common edge El.

Understanding the set of faces to be empty in two dimensions, the decomposition of F into

subsets induces a decomposition of N'(F) by considering

H(r) = Z
(;E {H,E,,Vj ,Fk }

102

where for G 6 {E,, Vj, Fk}, AF(Fac.') C .A/'(F) are those functions that vanish at all nodal points on F

that are outside of the set F_, and AF(F H) C AF(F) are those functions that are the nodal

interpolant of the restriction to F of continuous fimctions that are linear on each subdomain l'li and

vanish on oqll.

The following lemma is the crux of the analysis of Smith's method by Dryja and Widlund [4] for

conforming elements.

Lemma 9 For every ¢ E Uh(F), there exists a decomposition

¢= E eG
a6{H,Ei,Vs,Fk}

with¢. E uH(r), eGE uh(r_)= U,,(r)n tto'(r_) fora E (E,,E,Fk) such that

M M

Z I¢c;I,=/_,<.n,_<c(1 +log(H/,S))_El¢lb_.on,.
Ge{H,E,,Vj,Fk} i=1 i=1

(21)

The constant C is independent of the choice of ¢, and the mesh parameters h, H, and 5.

Let Pr : AF(F) --+ N'(F) denote the additive Schwarz operator defined by (10) with the bilinear

form d(-, .) replaced by the interface form s(.,-) and the decomposition of AY(fl) replaced by the

decomposition of AF(F) described above. We now prove that the condition number of AFt for the

nonconforming space has the same bound given in [4] for the similar operator for the conforming

finite element space.

Theorem 10 The condition number of the additive Schwarz operator Pr for Smith's decomposition

for the nonconforming finite element discretiz.tion satisfies

_(Pr) _< C((l + log(H/_)) _. (22)

The constant C is independent of the mesh parameters h, H, and 5.

Proof. As in the proof of Theorem 6, Pr may be written as the sum of an a priori bounded

number of disjoint projections, and so the largest eigenvalue of Pr is bounded by a constant.

To bound the smallest eigenvalue, we also proceed as in the proof of Theorem 6. For p E X'(F),

set PG = Z_((Zrp)G), G E {H, Ei, Vj,Fk}, where Z(is interpolation at the nodes on F into AF(F)

and (_'P)G is the decomposition of _fft' E Uh(F) that arises in Lemma 9. Since _rr'p and p agree at

the nodal degrees of fieedom of N'(F), and

H(r_)=z#(u.(r)), H(rS') =z((u,,(r_)) vac {E,,B,F_},

it is easy to check that

P = E PG.

ae{H,E,,V, ,Fk)

Working one subdomain at a time and using Theorem 8 and Lemma 3, we see that for G = H and

for G E { E,, Vj, Fk} such that Paa M Off, # (_ we have

-,on, 2 C Csi('S,a pc_;) <_ CIT Pat,/_,,,,_,- II"<_'((-_P)- 2 _ ' _ •, -)li/a,aa, < 1(27rl)o'Ii/2,on, (23)

103

Assume that we can prove that there exists a constant independent of h, H and a such that

M M

2 A/'(F). (24)t_° pl_/_,oa, Vp c_212rI't,/_,aa,< c E - a,
i=1 i=l

Then by summing (23) over subdomains and subspaces, noting that si(pa, pa) = 0 if F_ N 0_, = 0,

and applying Lemma 9, Equation (24), and Theorem 8, we see that

M M

s(pa,pa) = _ _ s_(pa,pa)< C(1 + log(H/5))_lirpl_/2,oa,
Ge{H,Ei,Vj,Fk} Ge{H,Ei,V3,Fk } i=l i=l

M

_< C(l+log(H/a))2} -] -_ni _ <C(l+log(U/a))2s(p,p).2. p l/2,af_, --
i=1

The proof of the condition number bound now follows from an application of Theorem 4, and we

are only left to verify (24).

Define a pseudo-interpolant _ra\r: N'(fl) --, Uh(fi) by (5), noting that the boundary of fl \ I" is

0f'l tO F. Using the techniques in the proof of Theoi'em 2, it is easy to show that there exists a

constant C1 depending only on the regula.rity of the mesh and the degree of the nonconforming

space such that
M M

IDXrpl,_a, _<c, _ l_ipl_,n, vp _ ._r(a).
i=1 i=1

By Lemma 7, for each p e N'(F) there exists an extension pE E .]_f(_) that agrees with p at the

nodal points on F such that

[_4_,pE 2 -_f_, 2 - •II.fli <_ ell Pl,/2,ofl, i = 1,..., M.

Combining these results after another applicatiol] of Lemma 7 with ¢ = _rrp, we conclude that

M M M

2_ _,_, cZ <_ I ,_,< Cl_%'l_/_,on,,_ z p],_, _

i=1 i=1 i=1

which verifies (24). El

In [6], the interface form arising from the discretization by mixed finite elements of (1) was

shown to satisfy Theorem 8 with N'(I') replaced by the appropriate space of interelement

multipliers. Hence, the proof given above is applicable to discretization by mixed finite elements,

and we arrive at the following corollary.

Corollary 11 The application of Smith's decomposition method to the dual-variable mixed finite

element formulation discussed in [6] results in an operator whose condition number grows at worst

like 0((1 + log (H/5))2).

BALANCING DOMAIN DECOMPOSITION

As the final domain decomposition method considered in this paper, we investigate the balancing

domain decomposition method of Mandel [3] applied to nonconforming finite elements. The method

104

involves the iterative solution (usually by conjugate gradients) of (16) preconditioned by the

balancing preconditioner described in Algorithm 1 below. Each iteration involves the solution of a

local problem with Dirichlet data, a local problem with Neumann data, and a "coarse-grid"

problem to propagate information globally and to insure the consistency of the Neumann problem.

The theory and practical performance of balancing domain decomposition for the standard

conforming Galerkin finite element method and mixed finite element method are the subjects of [5]

and [6], respectively. As in previous sections, we will deduce the convergence theory for the

nonconforming spaces from the conforming theory in [5] using tile isomorphism introduced in the

fifth section of this paper.

One remarkable property of balancing domain decomposition is that the bound on the condition

number of the preconditioned operator is independent of jumps in coefficients across subdomains.

Specifically, let the tensor A in (1) be written as A(x) = a(x).4(x), where a is a positive function

that is piecewise constant with constant value oq on _i. The uniform ellipticity then implies that

there exists positive constants e., _ such that

(25)

The bound on the condition number of the operator that arises in balancing domain decomposition

will depend on & and _ but will be independent of n'i and c. and c* in (2).

Following Mandel's original exposition in [3], we now recall tile balancing preconditioner in terms

of matrices. A equivalent variational presentation is given in [6]. By an abuse of notation, we use

the same symbol to denote an element in ._(F) and its associated vector of values attained at the

nodal degrees of freedom.

The balancing preeonditioner is parameterized by two sets of matrices, a set of weighting
Z Mmatrices {W;}_ 1 and a set of kernel generators { i}i=l. The weighting matrices

W_: N'(0f_) --+ A/'(0f_) are chosen such that they form a decomposition of unity on N'(1-'), i.e.

M

i=l

where N, denotes the canonical inclusion mapping N, : N'(0f_,) ---+N'(F) by extending elements of

N'(Of_i) by zero at all other degrees of fl'eedom. A prescription for the weighting matrices that

guarantees a convergence bound independent of coefficient, jumps between subdomains is given in

Lemma 12 below. For each subdomain a,, let rz_ = dim(N'(0ft,)), and select an n_ x rn, matrix Z_ of

full column rank with 0 _< rrzi < hi, such that

KerSi C RangeZi, i = 1,..., M. (26)

For the scalar, second order, elliptic problems we consider in this paper, KerSi is empty if there is

Dirichlet data imposed on any part of Ofii M Off, otherwise it is the set of fimctions that have the

same value at all the nodes on Ofli. From the kernel generators, we construct a "coarse space",
N'H C N'(F), defined by

M

N'H = {p E N'(F) : p = _ NiWiz, z E RangeZi}.
i=1

We say that q E N'(F) is balanced if it is orthogonal to iV, t; that is,

ZirWiT Nirq = O, i= 1, . . . , M. (27)

105

Let [p_12s,= s_(p_,p_). Considering those l'i that are orthogona.l to the range of Zi, working one glob

at a time, and using (36), (19), Lemma 13 and (36) in that order, we have

[_/2,0n, < _jtlEa 2° pill/2,on, (37)I_r_ (EG _0 Pi)]$, <-- ctjcI_Ofl'EG_gfI'P i 2 -- - II, 2

)l_ pilxt2,on,_< o_jC(1 +log(H/h) 2 - a_ 2

_< a-)-JC(1 + log 2 2(H/h)) lP_ls,-
Oti

By the construction of the decomposition, there is an a priori maximum number of globs that

intersect 0Oi A 0f2j. Summing over such globs, we conclude that

sj(NTNipi, Nf Nipl) <_ eL/C(1 + log(H/h))_s,(p,,p,).

The proof is completed by appealing to the bound in Lemma 12. [-I

REFERENCES

[1] Maksymilian Dryja and Olof B. Widhmd. An additive variant of the Schwarz alternating

method for the case of many subregions. Technical Report 339, Courant Institute of

Mathematical Sciences, 1987.

[2] Barry F. Smith. An optimal domain decomposition preconditioner for the finite element
solution of linear elasticity problems. SIAM J. of Sci. Star. Comput., 13(1):364-378, January

1992.

[3] Jan Mandel. Balancing domain decomposition. To appear in Communications on Applied

Numerical Methods.

[4] Maksymilian Dryja and Olof B. Widlund. Domain decomposition algorithms with small

overlap. Technical Report 606, Department of Computer Science, Courant Institute, May 1992.

[5] Jan Mandel and Marian Brezina. Balancing domain decomposition: theory and performance in

two and three dimensions. Submitted.

[6] Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler. Balancing domain decomposition for

mixed finite elements. Dept. Comp. and Appl. Math. TR93-08, Rice University, March 1993.

Submitted.

[7] Lawrence C. Cowsar. Dual-variable Schwarz methods for mixed finite elements. Dept. Comp.

and Appl. Math. TR93-09, Rice University, March 1993.

[8] Marcus Sarkis. Two-level Schwarz methods for nonconforming finite elements and
discontinuous coefficients. In Proceedi'n.ys of the .5'i:rth AnnTtnl Copper Mountain Conference on

Multigrid Methods, NASA CP-322,4, 1993. Also appeared as Technical Report 629, Courant

Institute, Department of Computer Science, March, 1993.

108

[9] Maksymilian Dryja and Olof B. Widlund. Towards a unified theory of domain decomposition

algorithms for elliptic problems. In Tony Chanet al., editors, Proceedings of the Third

International Symposium on Domain Decomposition Methods for Partial Differential

Equations, pages 3-21. SIAM, March 1989.

[10] Jan Mandel. Hybrid domain decomposition with unstructured subdomains. To appear in the

Proceedings of the Sixth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, 1993.

[11] Junping Wang, Ruifeng Xie, and Tarek Mathew. Domain decomposition for elliptic problems

with large jumps in coefficients. In preparation, 1993.

[12] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic

problems by substructuring. I. Math. of Comp., 47(175):103-134, July 1986.

[13] James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu. Convergence estimates

for product iterative methods with applications to domain decomposition. Math. of Comp.,

57(195):1-21, July 1991.

[14] Maksymilian Dryja and Olof B. Widhmd. The Neumann-Neumann method as an additive

Schwarz method for fintie element elliptic problems. Technical Report TR-626, Department of

Computer Science, Courant Institute, March 1993.

[15] Olof B. Widlund. An extension theorem tbr finite element spaces with three applications.

Dept. of Computer Science 233, Courant h_stitute of Mathematical Sciences, New York, 10012,

August 1986.

109

i

1

w

N94- 3681NESTED KRYLOV METHODS AND PRESERVING TttE ORTHOGONALI

Eric De Sturler 1

Delft University of Technology

Delft, The Netherlands

Diederik R. Fokkema 2

University of Utrecht

Utrecht, The Netherlands

/ 7 /:-/o
F. /.5

SUMMARY

Recently the GMRESR inner-outer iteration scheme for the solution of linear systems of equations has

been proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and

Vassilevski [1] and Saad (FGMRES) [10]. The outer iteration is GCR, which minimizes the residual over a

given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction

vector by approximately solving the residual equation. However, the optimality of the approximation over

the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal

corrections to the solution in the outer iteration, as components of the outer iteration directions may

reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR

in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular,

non-symmetric operator. We will discuss some important properties and we will show by experiments that,

in terms of matrix vector products, this modification (almost) always leads to better convergence. However,

because we do more orthogonalizations, it does not always give an improved performance in CPU-time.

Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer

GCR process. The experimental results indicate that for such methods it is advantageous to preserve the

orthogonality in the inner iteration. Of course we can also use other iteration schemes than GMRES as the

inner method. Especially methods with short recurrences like BICGSTAB seem of interest.

INTRODUCTION

For the solution of systems of linear equations the so-called Krylov subspace methods are very popular.

However, for general matrices no Krylov method can satisfy a global optimality requirement and have short

recurrences [5]. Therefore either restarted or truncated versions of optimal methods, like GMRES [11], are

used or methods with short recurrences, which do not satisfy a global optimality requirement, like BiCG

[6], BICGSTAB [14], BICGSTAB(/) [12], CGS [13] or QMR [8]. Recently Van der Vorst and Vuik proposed

a class of methods, GMRESR [15], which are nested GMRES methods; see Fig. 2. The GMRESR

algorithm is based upon the GCR algorithm [4]; see Fig. 1. For a given initial guess x0, they both compute

approximate solutions Xk, such that xk- xo E span{u], u2,..., Uk} and [[rk[[2 =[[b- Axk[[2 is minimal.

aD(.lft Universily of Technology, Faculty of Technical Mathematics and Informafics, P.O. Box 5031, NL-2600 GA Delft, The

Netherlands, E-mail: witaedsCdutinfh.tudelft.nl, The author wishes to acknowledge Shell Research B.V. and STIPT for

the financial support of his research.

2Mathematical Inslitute, University of Utrechl, P.O. Box 80.010. NL-35(]8 TA Utrechl, The Netherlands, E-mail:

fokkema@math.ruu.nl. This work was supported in par! by a NCF/Cray Research University Grant CRG 92.03

PI_,_OtN_ PAGE BLANK NOT FILMED PAGE][0 INTENTIONALLYBLANK'r

111

GCR:
1. Select x0, m, tol;

ro = b - Axo, k = 0;

2. while I]rkll2 > tol do

k=k+l;

Uk = rk-1; ck = Auk;

for i = 1, k- 1 do;

ai = CT Ck ;

Ck = Ck -- aici;

ck = ck/llck II;
_k = _'k/llckll;
ggk---Xk-1 -b(C_rk-1)_k;
rk Tk-1-- (C'kTk-1)Ck;

GMR_SR:

1. Select xo, m, tol;

TO= b- Axo, k = 0;

2. while]lrkH2 > toI do

k=k+l;

u k = 79m,k(A)rk-1; Ck = Auk;

for i = 1,...,k- 1 do

_i -----CTCk;

Ck = Ck -- O_iCi;

Ztk "_ _k -- Oti_ti;

ck ck/llckll2;
_k = _k/llcklb;

rk ---- rk-1

7_m,k(A) indicates the GMRES polynomial that

is implicitly constructed in m steps of GMRES

when solving Ay = rk_l.

Figure 1: The GCR algorithm Figure 2: The GMRESR algorithm

However, they compute different direction vectors uk. GCR sets uk simply to rk-1, while GMRESR

computes uk by applying m steps of GMRES to rk-1 (represented by Pm,k(A)rk-1 in Fig. 2). The inner

GMRES iteration computes a new search direction by approximately solving the residual equation and
then the outer (]OR iteration minimizes the residual over the new search direction and all previous search

directions u/. The algorithm can be explained as follows.

Assume we axe given the system of equations Ax = b, where A is a real, nonsingular, linear (n x n)-matrix

and b is a n-vector. Let Uk and Ck be two (n x k)-matrices for which

Ck = AUk, cTck = Ik, (1)

and let x0 be an initial guess. For xk - xo 6 range(Uk) the minimization problem

Hb- Axk]12 = rain lifo - mxll2.
xErange(Uk)

(2)

is solved by
xk = zo + vke_To

and rk = b - Axk satisfies
Tk= To-- CkC[To, Tk± Tange(Ck)

In fact we have constructed the inverse of the restriction of A to range(Uk)

inverse is given by A-ICkC T = uke T.

(3)

(4)

onto range(Ck). This

(5)

This principle underlies the GCR method. In GCR the matrices Uk = [ul u2... uk] and Ck = [cl c2... ck]

are constructed such, that range(uk) is equal to the Krylov subspace

Kk(A; to) = span{ro, Aro,..., Ak-lro} • Provided GCR does not break down; i.e. if Ck _ rk-1, it is a finite

method and at step k it solves the minimization problem (2).

112

Considerthe k-th step in GCR. Equations (1)-(3) indicate that if in the update uk = rk-1 (in GCR.), we

replace rk-1 by any other vector, then the algorithm still solves (2); however, the subspace Uk will be

different. The optimal choice would be Uk = ek-1, where ek-1 is the error in Xk-1. In order to find

approximations to ek-1, we use the relation Aek-1 = rk-1 and any method which gives an approximate

solution to this equation can be used to find acceptable choices for uk. In the GMRESR algorithm

GMRES(m) is chosen to be the method to find such an approximation.

However, since we already have an optimal xk-1, such that Xk-1 -- xo E range(Uk-1) , we need an

approximation uk to ek_l, such that Ck = Auk is orthogonal to range(Ck_l) . Such an approximation is

computed explicitly by the orthogonalization loop in the outer GCR iteration. Because in GMtLESR this is

not taken into account in the inner GMRES iteration, a less than optimal minimization problem is solved,

leading to suboptimal corrections [2] to the residual. Another disadvantage of GMRESR is that the inner

iteration is essentially a restarted GMRES. It therefore also displays some of the problems of restarted

GMRES. Most notably it can have the tendency to stagnate (see NUMERICAL EXPERIMENTS).

From this we infer that we should preserve the orthogonality of the correction to the residual also in the

inner GMR_S iteration. In order to do this we use Ak-1 = (I - Ck_IC_k_I)A as the operator in the inner

iteration. This gives the proper corrections to the residual: ck E Km(Ak-1; Ak-lrk-1). However, the

corresponding corrections to the approximate solution (contrary to ordinary implementations of Krylov

methods) are found by uk = A-lck E A-1Km(Ak-1; Ak-lrk-1). These corrections can be computed since

the inverse of A is known over this space. Equation (5) gives:

A-1Ak_I = A-1A. - A-1Ck_ICT_I A = I -- Uk_ICT1A.

This leads to a variant of the GMRESR iteration scheme, which has an improved performance for many

problems.

(6)

In this article we will consider GMRES and BICGSTAB as inner methods. In the next section we will

discuss the implications of the orthogonalization in the inner method. It will be proved that this leads to

an optimal approximation over the space spanned by both the outer and the inner iteration vectors. It also

introduces a potential problem: the possibility of breakdown in the generation of the Krylov space in the

inner iteration, since we iterate with a singular operator. We will show, however, that such a breakdown

can never happen before a specific (generally large) number of iterations. Furthermore, we will also show

how to remedy such a breakdown. We will also discuss the efficient implementation of these methods and

how we can truncate the outer GCR iteration. Outlines of the algorithms can be found in [7], [2].

CONSEQUENCES OF INNER ORTHOGONALIZATION

To keep this section concise, we will only give a short indication of the proofs or omit them completely.

The proofs can be found in [2]. Throughout the rest of this article we will use the following notations:

o By Uk -- [Ul...uk] and Ck = [cl...Ck] we denote matrices that satisfy the relations (1);

o By Xk and r k we denote the vectors that satisfy the relations (2)-(4);

o By Pk and Qk we denote the projections defined as Pk = Ck CT and Qk ---- VkC kTA;

o By A k we denote the operator defined as Ak = (I -- Pk)A;

o By Vm = [vl ..., vm] we denote the orthonormal matrix generated by m steps of Arnoldi (GMRES)

with Ak and such that vl = rk/[[rk[[2.

From this and (6) it then follows that

AQk = PkA, and A-1Ak = (I--Qk). (7)

113

We will describe the (k + 1)-th step of our variant of the GMRESR iteration scheme, where in the inner

GMRES iteration the modified operator Ak is used. We use m (not fixed) steps of the GMRES algorithm

to compute the correction to rk+l in the space Km(Ak; Akrk). This leads to the optimal correction to the

approximate solution Xk+l over the 'global' space range(Uk+l) if) A-1Km(Ak; Akrk).

Theorem 1 The Arnoldi process in the inner GMRES iteration defines the relation AkVm = Vm+lf-Im,

with if-Ira an ((m + 1) × m) gessenberg matrix. Let y be defined by

y : min Ilrk- AkV.,f/ll2_ER _

(8)

Then the minimal residual solution of the inner GMRES iteration: (A-1AkVmy) gives the outer

approximation
Xk+l = xk + (I -- Qk)Vmy, (9)

which is also the solution to the 'global' minimization problem

Xk+l: min lib- A:_II2 (10)
Erange(Uk))

range(Vm)

Italsofollowsfrom thistheorem that the GCR optimization(inthe outeriteration)isgiven by (9),so that

the residualcomputed in the innerGMRES iterationequalsthe residualofthe outerGCR iteration:

rk+1 = b- Axk+1 = b- Axk - AkVmy = rk --AkVrny. From thisitfollowsthatin the outer GCR iteration

the vectorsUk+1 and Ck+1 are given by

ck+a = (AkVmY)/llAkVmYllz, (11)
 k+l ----"((I -- Qa)VmY)/IIAkVmYlIz. (12)

Note that (I - Qk)Vmy has been computed already as the the approximate solution in the inner GMRES

iteration; see (9), and AkVmy is easily computed from the relation AkVmy = Vm+lfIym. Moreover, as a

result of using GMRES in the inner iteration, the norm of the residual rk+l as well as the norm of AkVrnY

is already known at no extra computational costs. Consequently, the outer GCR iteration becomes very

simple.

We will now consider the possibility of breakdown when generating a Krylov space with a singular,

nonsymmetric operator. Although GMRES is still optimal in the sense that at each iteration it delivers the

minimum residual solution over the generated Krylov subspace, the generation of the Krylov subspace

itself, from a singular operator, may terminate too early. The following simple example shows that this

may happen before the solution is found, even when the solution and the right hand side are both in the

range of the given (singular) operator and in the orthogonal complement of its null-space.

Define the matrix A =(e2 e3 e4 0), where ei denotes the i-th Cartesian basis vector. Note that

A = (I - eleT)(e2 e3 e4 el), which is the same type of operator as Ak, an orthogonal projection times a

nonsingular operator. Now consider the system of equations Ax = e3. Then GMRES (or any other Krylov

method) will search for a solution in the space

span{e3, Aea, A2ea, ...} = span{e3, e4, 0, 0,...} .

So we have a breakdown of the Krylov space and the solution is not contained in it. We remark that the

singular unsymmetric case is quite different from the symmetric one.

114

In the remainderof this sectionwewill provethat a breakdownin the innerGMRES method cannot occur

before the total number of iterations exceeds the dimension of the Krylov space K(A; r0). This means that,

in practice, a breakdown will be rare. Furthermore, we will show how such a breakdown can be overcome.

We will now define breakdown of the Krylov space for the inner GMRES iteration more formally.

Definition 1 We say there is a breakdown of the Krylov subspace in the inner GMRES iteration if

AkVm E range(Vm) , since this implies we can no longer expand the KryIov subspace. We call it a lucky

breakdown if vl E range(AkVm) , because we then have found the solution (the inverse of A is known

over the space range(AkVm)). We call it a true breakdown if vl ¢ range(AkVm) , because then the

solution is not contained in the Krylov subspace.

The following theorem relates true breakdown to the invariance of the sequence of subspaces in the inner

method for the operator Ak. Part four indicates that it is always known whether a breakdown is true or

lucky.

Theorem 2 The following statements are equivalent:

1. A true breakdown occurs in the inner GMRES iteration at step m;

P. range(AkVm_l) is an invariant subspace of Ak;

3. AkVm E range(AkVm_l) ;

5. Ak Vm = VmHm, and Hm is a singular m × m matrix.

From theorem 1, one can already conclude that a true breakdown occurs if and only if Ak is singular over

Km(Ak; rk). From the definition of Ak we know null(Ak) = range(Uk) . We will make this more explicit

in the following theorem, which relates true breakdown to the intersection of the inner search space and the

outer search space.

Theorem 3 A true breakdown occurs if and only if

range(V.,) n rang (Vk) # (0}.

The following theorem indicates that no true breakdown in the inner GMRES iteration can occur before

the total number of iterations exceeds the dimension of the Krylov space K(A; to).

Theorem 4 Let m = dim(K(A; r0)) and let l be such that rk = Pt(A)ro for some polynomial Pt of degree

l. Then

dim(gJ+l(Ak;ro))=j+ l forj+l <m

and therefore no true breakdown occurs in the first j steps of the inner GMRES iteration.

We will now show how a true breakdown can be overcome. There are basically two ways to continue:

In the inner iteration: by finding a suitable vector to expand the Krylov space.

115

In the outer iteration: by computing the solution of the inner iteration just before the true breakdown

and then by making one LSQR-step (see below) in the outer iteration.

We will consider the continuation in the inner GMRES iteration first. The following theorem indicates how

one can continue the generation of the Krylov space K(A; rk) if in the inner GMRES iteration a true

breakdown occurs.

Theorem 5 If a true breakdown occurs in the inner GMRES iteration then

3c • range(Ck) : Akc q_ range(AkVm-1) (13)

This implies that one can try the vectors ci until one of them works. However, one should realize that the

minimization problem (8) is slightly more complicated.

Another way to continue after a true breakdown in the inner GMRES iteration is to compute the inner

iteration solution just before the breakdown and then apply an LSQR-switch (see below) in the outer GCR

iteration. The following theorem states the reason why one has to apply an LSQR-switch.

Theorem 6 Suppose one computes the solution of the inner GMRES iteration just before a true

breakdown. Then stagnation will occur in the next inner iteration, that is rk+l I K(Ak+a; rk+l). This will

lead to a breakdown of the outer GCR iteration.

The reason for this stagnation in the inner GMRES iteration is that the new residual rk+l remains in the

same Krylov space K(Ak; rk), which contains a u • range(Uk) . So we have to 'leave' this Krylov space.

We can do this using the so-called LSQR-switch, which was introduced in [15], to remedy stagnation in the

inner GMRES iteration. Just as in the GMRESR method, stagnation in the inner GMRES iteration will

result in a breakdown in the outer GCR iteration, because the residual cannot be updated. The following

theorem states that this LSQR-switch actually works.

Theorem 7 If stagnation occurs in the inner GMRES iteration, that is if

minoela_" [[rk+l -- AkVmO[[2 = [Irk+Ill2, then one can continue by setting (LSQR-switch)

ck+2 = 7Ak+IATrk+I and (14)

Uk+2 = ,T(I -- Qk+l)ATrk+l, (15)

where 7 = Ilck+2112a. This leads to

rk+2

Xk+2

which always gives an. improved approximation.
a new inner GMRE8 iteration. _

T C (16)= rk+l -- (rk+lck+2) k+2 and

T u (17)= Xk+l -- (rk+lCk+2) k+2,

Therefore, these vectors can be used as the start vectors for

IMPLEMENTATION

We will now describe how to implement these methods efficiently (see also [2],[7]). First we will discuss the

outer GCR iteration and then the inner GMRES iteration. The implementation of a method like

116

BICGSTAB in the inner iteration will then be obvious. Instead of the matrices Uk and Ck we will use in

the actual implementation the matrices Ok, Ck, Nk, Zk and the vector dk which are defined below.

Definition 2 The matrices Uk, Ck, Nk, Zk and the vector dk are defined as follows.

Ck = CkNk, where

Nk = diag(llelll 1,11e211 a,.. ., llekll a),

AUk = CkZk,

where Zk is assumed to be upper-triangular. Finally dk is defined by the relation

rk = 1"0 -- Ckdk

(18)

(19)

(20)

(21)

From this the approximate solution Xk, corresponding to rk, is implicitly represented as

= + O Z;l (22)

Using this relation xk can be computed at the end of the complete iteration or before truncation (see next

section). The implicit representation of Uk saves all the intermediate updates of previous ui to a new uk+l,

which is approximately 50% of the computational costs in the outer GCR iteration (see (11) and (12)).

GMRES as inner iteration. After k outer GCR iterations we have Uk, Ck and rk. Then, in the inner

GMRES iteration, the orthogonal matrix Vm+l is constructed such that _Vrn+l = 0 and

AVm = CkSm + Vrn+l_Irn (23)

Bm = N_eT AVm (24)

This algorithm is equivalent to the usual GMRES algorithm, except that the vectors Avi axe first

orthogonalized on C'k. From (23) and (24) it is obvious that AVm - CkB,n = AkVra = Vm+z[-Im (cf.

theorem 1). Next we compute y according to (8) and we set (cf. (11) without normalization):

'k-t-1 --- Vm÷lHmY (25)

f_k+l = Vmy. (26)

This leads to A_2k+l = AVmy = CkBmy + Vm+lftmy = CkBmY + _k+l, so that if we set Zk+l = ((Bray) T 1) T

the relation A_rk+l = Ck+lZk+l is again satisfied. It follows from theorem 1 that the new residual of the
vinner and is given byouter GCR iterations is equal to the final residual of the inner iteration rk+l = -m

rk+l = rk -- E'k+l, SO that dk+l = 1. Obviously the residual norm only needs to be computed once. If we

replace, in the formula above, the new residual of the outer GCI:t iteration rk+l by the residual of the inner
GMRES iteration _.inner -- r inner-m , we see an important relation that holds more generally Ck+l ---- ?'k -m " This

relation is important, since in general (when other Krylov methods are used for the inner iteration) _k+l or

ck+l cannot be computed from uk+l, because Uk+l is not always computed explicitly, nor does a relation

like (25) always exist. Finally, we need to compute the new coefficient of Nk+l, H_k+lll21 in order to satisfy

the relations in definition 2.

TRUNCATION

In practice, since memory space may be limited and since the method becomes increasingly expensive for

large k (the number of outer search vectors), we want to truncate the set of outer iteration vectors (ui) and

117

((_i) at k = kmax, where kmax is some positive integer. Basically, there are two ways to do this: one can

discard one or more iteration vector(s) (dropping) or one can assemble two or more iteration vectors into

one single iteration vector (assembly). We will first discuss the strategy for truncation and then its

implementation.

A strategy for Truncation. In each outer GCR iteration step the matrices Ok and C'k are augmented with

one extra column. To keep the memory requirement constant, at step k = kmax, it is therefore sufficient to

diminish the matrices Ukm,_ and Ck by one column. From (22) we have Xk = xo + LrkZkadk. Denote

_k = Zk 1dk. Consider the sequence of vectors (_k)- The components _k (i) of these vectors _k axe the

coefficients for the updates ui of the approximate solution Xk. These coefficients _k(i) converge to the limits

_(i) as k increases. Moreover, (_k (1)) converges faster than (_k(2)), and (_k (2)) converges faster than (_k (3))

etc.. Suppose that the sequence (_k (1)) has converged to _(1) within machine precision. From then on it

makes no difference for the computation of xk when we perform the update x0 + _(1)_1. In terms of

direction vectors this means that the outer direction vector 91 will not reenter as component in the inner

iteration process. Therefore one might hope that discarding the vector _1 will not spoil the convergence.

This leads to the idea of dropping the vector _1(= A_I) or of assembling _1 with _2 into _ (say) when

6 (k) =]_k-1-- _k (27)

where e > 0 is a small constant. The optimal e, which may depend on k, can be determined from

experiments, when_(k) > e we drop ek , or we assemble _k , and ek_ (of course other choices are
feasible as well, but we will not consider them in this article). With this strategy we hope to avoid

stagnation by keeping the most relevant part of the subspace range(Ck) in store as a subspace of

dimension k - 1. In the next subsections we describe how to implement this strategy and its consequences
for the matrices C'k and Uk-

Dropping a vector. Let 1 <:j _< k = kmax. Dropping the column _j is easy. We Can discaxdit without

consequences. So let C'_:-1 be the matrix Ck without the column 5j. Dropping a column from Uk needs

more work, since Xk is computed as xk = xo + UkZkldk. Moreover, in order to be able to apply the same

strategy in the next outer iteration we have to be able to compute xk+l in a similar way. For that purpose,
assume that Xk can be computed as

xk = x'k_l = xo' + U__I(Z__I)-ld__I, (28)

where Uk-1 and Z__I are matrices such that AU__I = Ck_lZk_1-' ' (see (20)). These matrices Uk-1 and Z__ 1

are easily computed by using the j-th row of (20) to eliminate the j-th column of Ck in (_.0): In order to

determine x_ and d__ 1 we introduce the matrix Uk = A-1Ck = UkZ_ 1 • This enables us to write

k

i=1

_J

j-1

and fij = (fi3 - _ zij_i)/z_j. (29)
i=1

Substituting the equation for _2j into the equation for xk we can compute xk from

d(j) j-1 k

zjj i=_ k zjj i=j+_
(30)

118

Notice that this equation precisely defines x_ and d__l:

x'o = xo + (dk(J)/zij),

for i = 1,...,j-- 1 and

for i =j,...,k- 1.

(31)

Now we have deallocated two vectors and we compute Xk as in (28). We can continue the algorithm.

Assembly of two vectors. Let 1 < j < l _< k = kmaz. Again assembling ej and _ is easy. Let

5 = (d(i)_ i + d(t)_t) overwrite the l-th column of C'k- Then, let C_-1 be this new matrix C'k without j-th

column. Analogous to the above, we wish to compute xk as (28). For the purpose of determining the

matrices Uk-1 and Z'k_l, let fi = (d(J)(zj + d(kl)ftt) and compute t_rn) and t_m) such that

Zjrnft i + Ztmft, + t_m)ftj t_m)fi, which gives t_m) _ ,z(j),.(t), t_rn) .= = Ztmtt% �it k) - Zirn and = Ztm/d(_) This enables us

to write tim = _m=l Zirnfii, for m = 1,... ,j -- 1 and

i=1

i#j,t

for m = j,...,k. (32)

Substituting fii (fit 5-1= -)-_i=1 ziifii)/zii, to eliminate ,2i from (32) we get firn = Y]_n=lZimUi, for
m= l,...,j- l and

t_m) ^ m
_t m Jr--_Zj = Z (Zirn Jr t_m) Z_i_ti Jr t_m)_z

ziJ _=1 zii
i#i,t

for m= j + l,...,k. (33)

This equation determines the matrices U__, and Z__ 1. In order to determine x_ and d__l, note that Xk can
be computed as

k

i=1

i#j,l

Therefore x_ is just x0 and d__ 1 equals the vector dk without the j-th element and the l-th element

overwritten by 1. Similarly, as before, we have deallocated two vectors from memory. The assembled

vectors fi and 5 overwrite fir and _t. The locations of {tj and _j can therefore be used in the next step.

Finally, we remark that these computations can be done with rank one updates.

NUMERICAL EXPERIMENTS

We will discuss the results of some numerical experiments, which concern the solution of two dimensional

convection diffusion problems on regular grids, discretized using a finite volume technique, resulting in a

pentadiagonal matrix. The system is preconditioned with ILU applied to the scaled system; see [3],[9]. The
first two problems are used to illustrate and compare the following solvers:

• (full) GMRES;

• BICGSTAB;

• GMt_SR(m), where m indicates the number of inner GMRES iterations between the outer iterations;

• GCRO(m), which is GCR with m adapted GMRES iterations as inner method, using Ak;

* GMtLESRSTAB, which is GMI%ESR with BICGSTAB as inner method;

119

t

0

| -1

-2

-4

-5

0

....... (fun)gr_-es

........... gcr_m)
__ _n_esr(m)

i l ! a t

20 40 60 80 100

number of matrix vector products ---*

1

o

T -1
log(iirM)

--2

--3

--4

\ "-,,.. -,°

t i . i

I 2 3 4. 5

time(s) ..-*

Figure 3: Convergence history for problem 1 Figure 4: Convergence in time for problem 1

• and GCROSTAB, which is GCR with the adapted BICGSTAB as inner method, using Ak.

We will compare the convergence of these methods both with respect to the number of matrix vector

products and with respect to CPU-time on one processor of the Convex 3840. This means e.g. that each

step of BICGSTAB (and variants) is counted for two matrix vector products. We give both these

convergence rates because the main trade off between (full) GMRES, the GCRO variants and the
GMRESlZ variants is less iterations against more dot products and vector updates per iteration. Any gain

in CPU-time then depends on the relative cost of the matrix vector multiplication and preconditioning

versus the orthogonalization cost on the one hand and on the difference in iterations on the other hand. We

will use our third problem to show the effects of truncation and compare two strategies.

Problem 1. This problem comes from the discretization of

-(u=x + uvv) + bu= + cuv = 0

on [0, 11 x [0, 4], where

100 for 0<y<l and 2<y<3b(x,y)= -100 for l<y<2 and 3<y<4

and c = 100. The boundary conditions are u = 1 on y = 0, u = 0 on y = 4, u' = 0 on x = 0 and u' = 0 on

x = 1, where u' denotes the (outward) normal derivative. The stepsize in x-direction is 1/100 and in

y-direction is 1150.

In this example we compare the performances of GMRES, GCRO(m) and GMRESR(m), for m = 5 and

m -- 10. The convergence history of problem 1 is given in Fig. 3 and Fig. 4. Fig. 3 shows that GMlZES

converges fastest (in matrix vector products), which is of course to be expected, followed by GCRO(5),

GMR_SR(5), GCRO(10) and GMRESlZ(10). From Fig. 3 we also see that GCRO(m) converges smoother

and faster than GMRESR(m). Note that GCRO(5) has practically the same convergence behavior as

GMRES. The vertical 'steps' of GMRESR(m) are caused by the optimization in the outer GCR iteration,
which does not involve a matrix vector multiplication. We also observe that the GMRESlZ(m) variants

tend to lose their superlinear convergent behavior, at least during certain stages of the convergence history.

This seems to be caused by stagnation or slow convergence in the inner GMRES iteration, which (of

course) essentially behaves like a restarted GMl_ES. For GCRO(m), however, we see a much smoother and

faster convergence behavior and the superlinearity of (full) GMRES is preserved. This is explained by the

'global' optimization over both the inner and the outer search vectors (the latter form a sample of the

entire, previously searched Krylov subspace). So we may view this as a semi-full gmres. Fig. 4 gives the

120

1

1
lo_lrm)

-2I_. '"'"__',,-_s..\,.
...... (fu ll)gn'm_ ,, ,>..

-3|gcro(m)

-4 t_ grra_r(:) , ,0 ,lO '50,

O 50 100 150 200

number of nm_'ix vector products ._

Figure 5: Convergence history for problem 2

2scro(10)

__ gn_esrOo)

I _ _,. _

:, ,.., : :

0 1 2 3 4 5 6 7

time O) --'*

Figure 7: Convergence in time for problem 2

!
lo_,OrU)

0

-1

-2

--3

,-4.

_! .

.......(_XDgmn_

..... bicgstab

............gcrc_tab

__ gnm_r_nab

Figure 6: Convergence history for BICGSTAB

variants for problem 2

u=0

a=lO0

OOL u = l 1

f_IO0

u=l

Figure 8: Coefficients for problem 2

convergence with respect to CPU-time. In this example GCRO(5) is the fastest, which is not surprising in

view of the fact that it converges almost as fast as GMRES, but against much lower costs. Also, we see

that GCRO(10), while slower than GMRESR(5), is still faster than GMRESR(10). In this case the extra

orthogonalization costs in GCRO are outweighed by the improved convergence behavior.

Problem 2. This problem is taken from [14]. The linear system comes from the discretization of

-(a=x)x -

on the unit square, with b = 2 exp 2(x 2 + $/2). Along the boundaries we have Dirichlet conditions: u = 1 for

y = 0, x = 0 and x = 1, and u -- 0 for y = 1. The functions a and f are defined as shown in Fig. 8; f = 0
everywhere, except for the small subsquare in the center where f = 100. The stepsize in x-direction and in

$/-direction is 1/128.

If Fig. 5 a convergence plot is given for (full) GMRES, GCRO(m) and GMRESR(m). We used m = 10 and

m = 50 to illustrate the difference in convergence behavior in the inner GMRES iteration of GMRESR(rn)

and GCRO(m). GMRESR(50) stagnates in the inner GMRES iteration whereas GCRO(50) more or less

displays the same convergence behavior as GCRO(10) and full GMRES. For the number of matrix vector

products, it seems that for GMRESR(m) small m are the best choice.

121

In Fig. 6 a convergence plot is given for (full) GMRES, BICGSTAB, and the the BICGSTAB variants,

GMRESRSTAB and GCROSTAB. To our experience the following strategy gave the best results for the
BICGSTAB variants:

• For GMRESRSTAB we ended an inner iteration after either 20 steps or a relative improvement of the

residual of 0.01;

• For GCROSTAB we ended an inner iteration after either after 25 steps or a relative improvement of the

residual of 0.01.

The convergence of GMRESRSTAB for this example is somewhat typical for GMRESRSTAB in general

(albeit very bad in this case). This might be explained from the fact that the convergence of BICGSTAB

depends on a 'shadow' Krylov Subspace, which it implicitly generates. :Now, if if one restarts, then:

BiCGSTAB also starts=to build a new, possibly different, 'sh_0w' Kry]_ subspace. This may lead to

erratically convergent befiavior in the first few steps. Therefore, it may_hapPen that, if in the inner

iteration BICGSTAB does not converge (to the relative precision), the '7oluti0n' of the inner iteration is
_n0t very good and therefore_the OUter iteration may not give much improvement either. At the start the

same more or less holds for gCROSTAB; however, after a few outer GCR iterations the 'improved'

operator (Ak) somehow yields a better convergence than BICGSTAB by itself. This was also observed for

more tests, although it also may happen that GCROSTAB converges worse than BICGSTAB.

In Fig. 7 a convergence plot versus the CPU-time is given for GCROSTAB, BICGSTAB, GCRO(10) and

GMtZESR(10): The fastest convergence in CPV'time is achieved by GCROSTAB(10), which is _ 20%

faster than Bi_STAB notwithstanding the extra work in orthogonalizations. We also see, that although

GCRO(10) takes fewer iterations than GMRESlZ(10)I in CPU-time the latter is faster. So in this case the

decrease in iterati0nsdoes not outweigh the extra work in orthogonalizations. For completeness we mention

that GM_SRSTAB took almost 15 seconds to converge, whereas G_ES took almost 20 seconds.

Problem 3. The third problem is taken from [10]. The linear system stems from the discretization of the
partial differential equation

-uxx - u_v + 1000(xux + yuv) + 10u = f

on the unit square with zero Dir[chlet boundary conditions. The stepsize in both x-direction and

y-direction is 1/65. The fight'h_and side is selected once the matrix is constructed so that the solution is

known to be x = (1, 1,..., i) T. The zero vector was used as an initial guess.

In Fig. 9 we see a plot of the convergence history of full GMRES, GMRESR(5), GCRO(5) and
GCRO(10,5) for two different truncation strategies, where the first parameter gives the dimension of the

outer search space and the second the dimension of the inner search space. The number of vectors in the

outer GCR iteration is twice the dimension of the search space. For the truncated version:

• 'da' means that we took ¢ = 10 -3 and dropped the vectors fil and cl when _ (k) < e and assembled the

vectors _9 and ill0 as well as the vectors _9 and _10 when _ (k) > e;

• 'tr' means that we dropped the vectors u9 and _ each step (e = 0, see also [16]).

Notice that GCRO(5) displays almost the same convergence behavior as full GMRES. GMRESR(5)

converges eventually, but only after a long period of stagnation. The truncated versions of GCRO(5) also

display stagnation, but for a much shorter period. After that the 'da' version seems to converge as

superlinear, whereas the 'tr' version still displays periods of stagnation, most notably at the end. This

indicates that the 'da' version is more capable of keeping most of the 'convergence history' than the 'tr'

version. This kind of behavior was seen in more tests: 'assembled' truncation strategies seem to work

better than just discarding one or more iteration vectors.

In Table 1 we give the number of matrix vector products, the number of memory vectors and the

CPU-time on a Sun workstation. From this table we see that GCRO(5) _ by far the fastest_method and

122

- : L

1.0e+01

1.0e+00

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

i i t ,

GMRES --

GMRESR (5)

GCRO (51
GCRO {I0, 5) da

GCRO (I0, 5) tr

_ ,._,_

I I I I

50 I00 150 200 250

number of matrix vector products

Figure9: Convergence historyforproblem 3

uses about half the amount of memory vectors full GMRES and GMRESR(5) use. More interesting is that

GCRO(10,5) 'da' converges in the same time as GMRESR(5), but uses only one third of the memory space.

CONCLUSIONS

We have derived from the GMRESR inner-outer iteration schemes a modified set of schemes, which

preserve the optimality of the outer iteration. This optimality is lost in GMRESR since it essentially uses

'restarted' inner GMRES iterations, which do not take a_lvantage of the outer 'convergence history'.

Therefore, GMP_SR may loose superlineax convergence behavior, due to stagnation or slow convergence of

the inner GMRES iterations.

ilMethod
GMRES

GMKESR(5)

GCRO(5)

GCRO(10,5) 'da'

GCRO(10,5) 'tr'

Mat-Vec

77

188

83

150

244

Memory Vectors

77

81

39

25

25

CPU-time

21.3

18.5

9.4

18.3

30.3

Table 1: Number of matrix vector products, number of memory

vectors and CPU-time in seconds for problem 3

123

In contrast, the GCRO variants exploit the 'convergence history' to generate a search space that has no

components in any of the outer directions in which we have already minimized the error. For GCRO(m)

this means we minimize the error over both the inner search space and a sample of the entire previously

searched Krylov subspace (the outer search space), resulting in a semi-full GMRES. This probably leads to

the smooth convergence (much like GMRES) and the absence of stagnation, which may occur in the inner

GMRES iteration of GMRESR. Apparently the small subset of Krylov subspace vectors that is kept

approximates the entire Krylov subspace that is generated, sufficiently well. For both GMRESR(m) and

GCRO(m) it seems that a small number of inner iterations works well.

We may also say, that the GCRO variants construct a new (improved) operator (of decreasing rank) after

each outer CCR iteration. Although there is the possibility of breakdown in the inner method for GCRO,

this seems to occur rarely as is indicated by theorem 4 (it has never happened in any of our experiments).

With respect to performance of the discussed methods we see that GCRO(m) (almost) always converges in

fewer iterations than GMRESR(m). Because GCRO(m) is on average more expensive per iteration, this

does not always lead to faster convergence in CPU-time. This depends on the relative costs of the matrix

vector product and preconditioner w.r.t, the cost of the orthogonalizations and the reduction in iterations

for GCRO(m) relative to GMRESR(m). Our experiments, with a cheap matrix vector product and

preconditioner, show that already in this case the GCRO variants are very competitive with other solvers.

However, especially when the matrix vector product and preconditioner are expensive or when not enough

memory is available for (full) GMRES, GCRO(m) is very attractive. GCRO with BICGSTAB also seems

to be a useful method, especially when a large number of iterations is necessary or when the available

memory space is small relative to the problem size. GMRESR with BICGSTAB does not seem to work so

well, probably because, to our observation, restarting BICGSTAB does not work so well.

We have derived sophisticated truncation strategies and shown by example that superlinear convergence

behavior can be maintained. From our experience, the 'assembled' version seems to have the most promise.

Acknowledgements. The authors are grateful to Gerard Sleijpen and Henk van der Vorst for

encouragement, helpful comments and inspiring discussions.

References

[1] O. Axelsson and P.S. Vassilevski. A black box generalized conjugate gradient solver with inner

iterations and variable-step preconditioning. SIAM J. Matrix Anal. Appl., 12:625-644, 1991.

[2] E. De Sturler. Nested Krylov methods based on GCR. Technical Report 93-.., Faculty of Technical

Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1993.

[3] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. Van der Vorst. Solving Linear Systems on Vector

and Shared Memory Computers. SIAM Publications, Philadelphia, PA, 1991.

[4] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric

systems of linear equations. SIAM J. Numer. Anal., 20:345-357, 1983.

[5] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate

gradient method. SIAM J. Numer. Anal., 21:352-362, 1984.

124

[6]

[7]

IS]

[9]

[10]

[11]

[12]

[13]

[la]

[15]

[16]

R. Fletcher. Conjugate gradient methods for indefinite systems. In G.A. Watson, editor, Numerical

Analysis Dundee 1975, Lecture Notes in Mathematics 506, pages 73-89, Berlin, Heidelberg, New York,

1976. Springer-Verlag.

D.R. Fokkema. Hybrid methods based on the GCR principle (to appear). Technical report,

Mathematical Institute, University of Utrecht, Utrecht, The Netherlands, 1993.

R.W. Freund and N.M. Nachtigal. QMR: A quasi minimal residual method for non-Hermitian linear

systems. Numer. Math., 60:315-339, 1991.

J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear equations systems of

which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148-162, 1977.

Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Statist. Comput.,

14:461-469, 1993.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986.

G.L. Sleijpen and D.R. Fokkema. BiCGstab(l) for linear equations involving matrices with complex

spectrum. Technical Report 772, Mathematical Institute, University of Utrecht, Utrecht, The

Netherlands, 1993.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput., 10:36-52, 1989.

H.A. Van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631-644, 1992.

H.A. Van der Vorst and C. Vuik. GMRESR: A family of nested GMRES methods. Technical Report

91-80, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The
Netherlands, 1991.

C. Vuik. Further experiences with GMRESR. Technical Report 92-12, Faculty of Technical

Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1992.

125

IMPLEMENTING ABSTRACT MULTIGRID OR MULTILEVEL METHODS *

Craig C. Douglas

Department of Computer Science

Yale University

New Haven, Connecticut

SUMMARY

Multigrid can be formulated as an algorithm for an abstract problem that is independent of the

partial differential equation, domain, and discretization method. In such an abstract setting, problems

not arising from partial differential equations can be treated also (c.f. aggregation-disaggregation

methods). Quite general theory exists for linear problems, e.g., C. C. Douglas and J. Douglas, SIAM

J. Numer. Anal., 30 (1993), pp. 136-158.

The general theory was motivated by a series of abstract solvers (Madpack). The latest version (4)

was motivated instead by the theory. Madpack now allows for a wide variety of iterative and direct

solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It

allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there

is a fast, multigrid Poisson solver (two and three dimensions).

The type of solvers and design decisions (including language, data structures, external library

support, and callbacks) are discussed here. Based on the author's experiences with two versions of

Madpack, a better approach is proposed here. This is based on a mixed language formulation (C and

Fortran+preprocessor). Reasons for not just using Fortran, C, or C++ are given. Implementing the

proposed strategy is not difficult.

1. INTRODUCTION

The term ab._tra('! m ultigHd was coined in [1]. This refers to theory which is quasi-independent of

the elliptic boundary value problem. The dependence is introduced by assuming that the (discretized)

problem satisfies a very small number of hypotheses which contribute simple expressions to the

convergence rate formula. The theory in [1] is general enough to apply to nonnested solution spaces

and includes example boundary value problems on general domains, with variable coefficients, and

finite difference and finite element discretizations.

The concept of abstract multigrid was pushed to the extreme in [2], where a general theory for

linear problems is presented with virtually no constraints on the origin of the problems.

Abstract multigrid is defined in §2. Two implementations of abstract multilevel methods (see [3]

and [4]) are discussed in §3. A discussion of what might be the right set of languages to implement

*This work was supported in part by IBM and the Office of Naval Research.

PIt6C_d)I_G PAG.c BLA_'dK NOT FILMED LrI_AGE"_------INTENTIONA'.- LY 6LAN_

127

abstract multilevel methods is in §4. Finally, some conclusions are drawn in §5.

2. ABSTRACT MULTIGRID

Assume we are solving some problem, possibly derived from a partial differential equation, possibly

not. Assume further that by various means a sequence of (linear) problems

Ajxj=b_, l < j < k, (1)

are formed which approximate the real pTvblem

Akxk ----bk, (2)

where xj, bj E .M3, 1 <_ j < k. Typically, M3 is a real or complex vector space when actually com-

puting the solution to the problem. Frequently,

dim(Mj) _ Cdim(JUfj_l), C > 1.

There are typically three mappings between the neighboring solution spaces.

T¢3, Q_: Mj--*Mj-1, 2_<j<k,Pj : M_ --_ M_+a, l <_j <_ k-1.

The T_j and Qj are restriction (or projection) matrices and the Pj are prolongation (or interpolation)

matrices. Frequently, :Pj - cTCT1, where c E]R. The matrices Aj and Aj-1 are typically related

through the relation

A3_a = QjA_P_-I, 2 < j <_ k.

The Galerkin form of multigrid requires that Q3 = PT I. The Q1 are frequently injection matrices

when a finite difference discretization is applied to a partial differential equation.

A multilevel correction algorithm is simply defined by

Algorithm MGC (lev, {Aj, xj, b_ }j--1,k {793 }j=l,k-1 {7¢_}i___2k)

1. Xle, *-- Solverl_,,(Al_, xt_, bl_,)

2. If lev > 1, then repeat 2a-2d until some condition is met:

2a. xt¢,,-1 _-- O, bt_,,-1 _ TQe_(bt_ - Al_,xl_)

2b. MGC (lev 1, {A3,xj, b3}k=l, k-_ k- {nj}j:2)
2C. Xle v 4-- Xle v -Jr Plev-lXlev-1

2d. xt_, 4-- Solvert,,_(At_, x_,v, bt_,,)

A common condition in step 2 is to do steps 2a-2d some specified number of times (e.g., 0 for one

way multigrid, 1 for a V Cycle, or 2 for a W Cycle).

On the coarsest level, lev = 1, the solver is frequently some flavor of Ganssian elimination (e.g., a

sparse one). Common solvers on the other levels include relaxation methods (e.g., point, line, plane,

or zebra Gauss-Seidel) and conjugate direction methods (e.g., conjugate gradients or residuals, CGS,

GMRES, or Orthomin). The latter class of iterative methods is most effective on highly nonuniform

meshes with a significant difference between the largest and smallest mesh spacing or diameter on a

level.

A general algorithm that provides very good initial guesses is the nested iteration one:

128

Algorithm NIC (lev, {Aj, x_, b3}j=a,k {PJ}j=l,k-1 {1--4j}j=2k)

1. MGC (1, {A3,zj,bj}k=l, k-a {nj} :2)
2. Do steps 2a-2b with lev = 2,.. •, k:

2a. xle v +.- _lev_lXlev_ 1

k k-1
25. MGC (lev, {Aj,xj, bj}j=l, k{7'jL:I,)

A one way multilevel algorithm means that Algorithm MGC never performs any portion of its step 2

as part of its use by Algorithm NIC. Most complexity arguments showing that multigrid is of optimal

order are based on Algorithm NIC, not Algorithm MGC.

For nonlinear problems, there are two standard approaches: the Full Approximation Scheme

(FAS) and damped Newton multilevel. FAS is similar to Algorithm MGC, but changes two lines:

,,_(FAS)
2a. xl_,,-1 +- K.l_v XZ_,,, bl_,,-a +- T4t_,,(btev - At_,,xt_,,) - Al_,,-lxl_,,-1

2C. Xlev +'- Xlev q- _lev-l(Xlev-1 I_'ev '_lev]

T2(FAS)
Note that in many situations '_le. - T41¢_. Also, the operator Aj is not linear anymore, but involves
function evaluations.

The damped Newton algorithm is a modification of Algorithm NIC. Before each reference to

Algorithm MGC, a Jacobian is formed and a damped Newton step is performed. The last Jacobian

on a level is saved for use in subsequent multilevel correction steps.

The difference between these two nonlinear approaches is easy to categorize. FAS uses a nonlinear

iterative method (e.g., nonlinear Ganss-Seidel) while damped Newton uses standard linear solvers.

When evaluating the nonlinear function is inexpensive, FAS usually produces an approximate solution

faster than the damped Newton multilevel method. However, when the function evaluations are

expensive, the damped Newton multilevel method usually produces an approximate solution faster
than FAS.

Note that in Algorithms MGC and NIC, there are only two obvious components per level: the

solver and the methods for passing information between levels. There are other components hidden

by this formulation: a possible set of preconditioners for use by the solvers, a method for computing

a matrix-vector product for some set of storage formats, and a set of discretization methods in the
partial differential equation case.

For problems not arising from partial differential equations, the only components in Algorithm

MGC that can be optimized are the solvers and the restriction matrices Q3 and/_3. Both theory and

practical experience demonstrate rather conclusively that finding better Q3 matrices is far superior

to trying to find an optimal iterative method as the solver (e.g., see [5]).

For partial differential equation problems, using better discretization methods usually makes a

bigger impact on the convergence rate than searching for a slightly better interpolation scheme or

iterative solver. There are exceptions to this for trivial problems (e.g., Laplace's equation on a square
with uniform grids).

3. MADPACK

The term madpack is a mnemonic for mulligrid (multilevel), aggregation-di.saqgrcgation package..

It started as a compact set of subroutines for solving problems of the form (1)-(2). The first two

versions were released in 1986 and the fourth in 1992. All versions have been written using numerous

129

macrosto hide data structures and improvethe readability. Currently, version 2 is available through

Netlib and MGNet (see [6] and [7] for a description of MGNet). Version 2 is in the public domain.

Version 4 is not really compatible with version 2 and is also owned by IBM. It is available through

IBM's Internet anonymous ftp server and MGNet. All announcements and bug fixes for version 4

are distributed through MGNet.

Version 2 is discussed in §3.1. Version 4 is discussed in §3.2. A number of issues that these two

versions raise are discussed in §4.

3.1. MADPACK, VERSION 2

Version 2 [8] was originally written in an extended flavor of Ratfor. A translator converted this

to Fortran-77. This, in turn, is compiled by whatever compiler is available on a given machine. After

determining that on some machines (e.g., SUN workstations in 1986) C versions of the subroutines

ran up to 40% faster than the Fortran-77 equivalent, the entire code was ported to C. Including

comments, there are only 1500-1600 lines in each language version. All three language versions are

distributed.

Version 2 consists of 9 subroutines:

The first two subroutines,

can be called directly.

Routine Description

klmg

klni

klax

kldsnf

kldsss

klres

klsgs

klsgsc

klsgsm

Algorithm MGC

Algorithm NIC

matrix-vector multiply

factor matrices

forward/backward solves

compute residual

Symmetric Gauss-Seidel
Preconditioned conjugate gradients

Preconditioned Orthomin(1)

klmg and klni, are meant to be the only user callable subroutines, but any

Version 2 supports an odd flavor of sparse matrix storage (see [9]) in the solver routines. The

matrices Aj are assumed to have a symmetric nonzero structure, independent of whether or not

A i = A T. This means that in some cases, a small number of zeroes are actually stored in the sparse

matrix representation of A_. The main diagonal, the nonzero elements of the columns of the upper

triangular part of A j, and the nonzero elements of the rows of the lower triangular part of A3 are

stored independently (the lower part only if Aj is nonsymmetric). This allows for only half of the

row or column indices to be stored due to the symmetry of the nonzero structure. It also allows for

numerous computational simplifications and some tricks in reducing costs in the direct and iterative

solvers(see[10]).
For restriction and prolongation matrices, two additional storage formats are supported. A general

sparse matrix format, as implemented in the second Yale Sparse Matrix Package (see [11]) is useful on

irregular grids. A stencil format is extremely efficient for uniform or tensor product grids. Typically,

rj -b c storage elements are used, where r3 =Rows(T_j) and c is a small natural number.

130

Table 1- Solvers and preconditioners

Solver Preconditioner

None User ILU Diag SGS SSOR
NoSolver

User

Factor

Solve

Symmetric Gauss-Seidel

Ganss-Seidel

Gauss-Seidel, red-black

Conjugate gradients
Minimum residuals

CGS

CGSTAB

GMRES

* * * * *

any any * * * *

GD * * * * *

GD * * * * *

G * * * * *

GSD * * * * *

GSD * * * * *

GSD GSD G G G G

GSD GSD * * G *

G * G G * G

G * G G * G

G * G G * G

* -- Error

G = General sparse matrices

S = Stencil matrices

D = Dense matrices

any = any format

Only Algorithms MGC and NIC are included. There is no support for nonlinear or time dependent

problems. Version 2 has been imbedded in other people's nonlinear and time dependent codes,

however. There is also no user callback mechanism, so that if the user has some special solver,

preconditioner, or change of level subroutine, the source code for version 2 has to modified.

3.2. MADPACK, VERSION 4

This is a complete redesign and rewrite of Madpack. It is incompatible with version 2 in numerous

ways. This is actually two quite distinct codes, DAMG [3] and DPMG [4]. DAMG is an abstract

solver for linear and mildly nonlinear problems (FAS is supported). DPMG is a fast Poisson solver

for two and three dimensional problems on simple uniform or tensor product grids.

DAMG supports dense, stencil, and general sparse matrix formats (this time, the more common

first Yale Sparse Matrix Package [12] format was used) in the computational kernels. The dense case

rarely occurs in solving partial differential equations; it is more common when solving aggregation-

disaggregation problems (see [5]). Table 1 contains a summary of the solvers and preconditioners

supported in the IBM version.

Unlike version 2, version 4 requires an external library of solvers (there are some solvers provided,

but not many). What is distributed by IBM runs only on machines with their proprietary engineering

and scientific subroutine library. Currently, this library only runs on IBM mainframes and RISC

System/6000 workstations. Since DAMG was originally written on a machine that is not supported

131

Table 2: Level independentinformation data structure

i Symbolic name

1 rngfn

2 12in fro

3 bxsize

4 lndm

5 Inim

6 lnjm

7 levelf

8 levelc

9 startl

10 presva
11 lastdm

12 lastim

13 lastjm

14 info

15 restart

20 assist

iparm(i)

Definition

Which multilevel algorithm

Second dimension of infm array

Length of b and x arrays

Length of dm array

Length of im array

Length of jm array

Index of the finest level

Index of the coarsest level

Index of the starting level

Preserve coarsest level's matrices or not

Index of last element in dm in use

Index of last element in im in use

Index of last element in jm in use

Control of debugging information

Continued computation indicator

When all else fails

by this library, there is obviously a version which uses other libraries, e.g., LAPACK and the first

Yale Sparse Matrix Package. Interfacing DAMG to other libraries is now fairly painless.

DAMG accepts three external subroutine arguments in case the users want to use their own

solver(s), preconditioner(s), or change of level subroutine(s). In retrospect, there should have been
a fourth for matrix-vector multiplies. These features are used extensively in DPMG to avoid storing

matrices.
Both DAMG and DPMG are written in the same extended Ratfor as is version 2. Only the

Fortran-77 translation is distributed by IBM, however. The codes assume double precision real data.

Changing to single precision only requires changing one line of a file included by each of the Ratfor

codes. Changing to complex data is only slightly harder.
DAMG can be restarted after it returns. This allows for coarse levels to be removed from the

computational flow. It also allows an external adaptive grid refinement procedure to work with

DAMG to add finer levels.

Data is passed to and from DAMG in the standard awkward style imposed by Fortran-77's

limitations. Matrices and vectors are piled into a set of five (integer and real) vectors. As a substitute

for the more natural pointer data type, indices are stored in information data arrays, indexed by the

level number (see Tables 2-4). A language that supports more reasonable data structures, pointers,

and dynamic memory allocation and freeing would simplify this.
Table 2 contains information which is level independent. This includes the length and the index

of the last used element of certain vectors, which multilevel algorithm to start with, the indices of

the finest, coarsest, and starting levels, how much debugging information to print, and whether this

is a restart of an earlier computation.

Table 3 contains information relevant to the computational algorithms which is level dependent.

132

Table 3: Level dependent algorithm information data structure

infalg(i, j on level j

Symbolic name Definitioni

1 Solver

2 SolverIters

3 Precond

4 MGIters

5 NIIters

6 IdxXB

7 NXB

8 Colors

Which solution method

Iterations of Solver

Which preconditioning method

Iterations of Algorithm MGC or MGFAS

Iterations of Algorithm NIC or NIFAS

Index of first element of bj or xj in b or x

Number of elements in bj and xj

Number of colors in a multicolor ordering

Table 4: Matrix information data structure

in fro(i, k, j) on level j

i/k 1 2 3 4 5

1 AType RType PType NIPType FASRType

2 ACols RCols PCols NIPCols FASRCols

3 ARows RRows PRows NIPRows FASRRows

4 ADiml RDiml PDiml NIPDiml FASRDiml

5 ADim2 RDim2 PDim2 NIPDim2 FASRDim2

6 IdxA IdxR IdxP IdxNIP IdxFASR

7 IdxIA IdxIR IdxlP IdxINIP IdxIFASR

8 IdxJA IdxJR IdxJP IdxJNIP IdxJFASR

Table 5: How matrices are chosen for changing levels

Wanted

AfzPj

T_(FAS)
J

Order of selection

n,, PY÷I,and NZPjr+l

7aj, _T+I , and JY'ZPj

AfZPj, Pj, and T_jT1

T_(FAS) T_j, 'PT+I and J_f:T_:)T÷Ij)

133

This includes the solver and preconditioner pairing, how many iterations of the algorithms to use on

this level, the index into the solution and right hand side vectors for x_ and b3, and their lengths.

When changing levels, it is very rare that _j, 7_j, AfZPj, and T_ FAs) will all be defined. AfZ'Pj

corresponds to a special version of Pj in step 2a in Algorithm NIC (see §2). Usually only one or two

of these will be defined. Further, the matrices are typically related to each other in very particular

ways mathematically. An effort has been made to allow users of DAMG the option of generating

only one matrix when it can be re-used or is the transpose of another matrix. DAMG determines

which operation is wanted and then determines from information in the (three dimensional) in fro

data structure (see Table 4) how to change levels. Table 5 contains the order of choice, as determined

by which matrix is wanted. The user callback for changing levels is the last choice unless the matrix

type specifies doing this.
DPMG uses DAMG to do multileveling. Specialized solvers, interpolation, and projection sub-

routines are used throughout the computations, however. This means that DPMG does not store

matrices normally, thus saving enormous amounts of memory which can be used instead for solving

much larger problems. DPMG solves

-Au -- bin_,
u = go on 0f_0,

un = gl on0f_l,

(3)

where 0f_00 0f_l = 0g_ and 0f_0 A 0f21 -- 0.

This is discretized on grids
= f_ U 0f/o U 0_21.

In essence, linear systems of the form (1)-(2) are solved approximately for a sequence of grids _i.

The vectors xj and bj can be thought of as "grid functions" on _j. The values of b, go, and gl on _j

are stored in bj (multiplied by the square of the mesh spacing when a uniform mesh is used). The

values of go on 0f_0 and an initial guess to the solution u in _2 U 0f_l are stored in xj before the call

to DPMG. DPMG uses a central difference discretization of Poisson's equation, even at Neumann

boundary points. Dirichlet boundary points are not eliminated a priori.

Interpolation is either bilinear, trilinear, or a fourth order method based on (3). The latter uses

the difference operator, similar to a Ganss-Seidel iteration with a three color ordering and a rotated

operator, to improve the order of the interpolation (see [13]).
The three restriction methods are based on stencils. These are described in detail in [14]. The two

second order methods are based on [1, 2, 1] and [1,4, 1] weightings in one dimension. Tensor products

are used to generate the stencils in higher dimensions. The fourth order stencil is an average of the

[1, 4, 1] tensor product stencil and point injection.
Only Algorithms MGC and NIC are options. The solvers are sparse Ganssian elimination and

Gauss-Seidel with either the natural or red-black orderings.

DPMG was designed to run very fast on four quite different architectures:

1. IBM mainframes with vector units.

2. Conventional vector machines.

3. Nonvector machines with multiply-add hardware chaining.

4. Nonvector machines with no fancy hardware.

134

An example of 2 above is a Cray, an example of 3 is an IBM RISC System/6000 workstation, and an
example of 4 is a SUN workstation or a PC.

The Gauss-Seidel with the natural ordering subroutines were rewritten in IBM mainframe vector

assembler. These routines are always faster than the Fortran equivalents no matter what size vectors

are used. As an interesting aside, a version was produced that completely vectorizes by using an

odd re-interpretation of how to compute the updates based on the trailing vector elements that

normally do not vectorize. This is described in [15]. The trick does not work in Fortran, C, or C++
unfortunately.

The usual philosophy for vectorizing Gauss-Seidel is to use a red-black ordering. In addition, this

allows the interpolation subroutines to ignore half of the fine grid points. However, the red-black

ordering has an unfavorable feature. The right hand side and approximate solution vectors pass

through cache twice per iteration. Only if a solver is written in a blocked by the cache size manner

can this be alleviated. Due to the boundary conditions in (3) and the fact that the matrices are not

stored in DPMG, this makes things overly complicated to program. Hence, DPMG uses a traditional
implementation for the red-black subroutines.

While the multilevel convergence properties of red-black Gauss-Seidel are better than the naturally

ordered one, both solvers provide about equal performance when using Algorithm NIC and a V Cycle.

4. LANGUAGE ISSUES

In this section, advantages and disadvantages of Fortran, C, and C++ will be discussed in the

context of an abstract multilevel solver. A mixed solution will be proposed.

4.1. FORTRAN

In §3.2, the disadvantages of Fortran-77 in terms of data structures were discussed. There is no

conceivable way to get around this. Even using macros or Ratfor only helps so much. The real

problem is that users of the package still have to initialize the data structures. They are not likely
to use either my macros or Ratfor.

DAMG uses scratch storage in its solvers. Predicting the amount needed for each (solver, precon-

ditioner) pair is an art which no user should ever have to master. Worse, the formulas given for some

popular sparse matrix iterative solvers are wrong (predicting less memory than is required). For all

of the solvers used in §3, the amount of scratch storage can be written in terms of N (the number or

rows or columns), NZ (the number of nonzeroes in A3), and a constant:

Nat,- = C. . N + CNZ " NZ + Ce.._,.,3. (4)

While default values can be used, the user should be able to override these.

However, there are some areas where Fortran shines. For one, real and complex data types of

various word lengths are part of the language. So, by using a simple preprocessor (e.g.,/lib/cpp or

m4) that is available on most computer systems used by people who do scientific computation, one

source code can be maintained, even if multiple subroutine names are generated, one per data type

supported. For example, in the Ratfor source code for DAMG, subroutine mgal is referenced by

NameIt(mgal)

135

struct Matrix {

};

Table 6: New Matrix Structure

int MatrixType; /* the matrix type */

int MatrixCols; /* number of columns */

int MatrixRows; /* number of rows */

int MatrixLDim; /* leading dimension for dense matrices */

void *MatrixCoeffs; /* Pointer to matrix elements */

int *MatrixIA; /* Pointer to IA elements */

int *MatrixJA; /* Pointer to JA elements */

NameIt prepends the letter d (double real), s (single real), z (double complex), or c (single complex)

depending on the definition of a macro, FLOAT.
Another area where Fortran does well is in optimizing code for certain classes of machines, particu-

larly ones with vector units. The author naively assumed vector machines would go like the dinosaurs

with the advent of superscalar, very fast workstations. Unfortunately (or fortunately depending on

your view), vector units are being glued onto superscalar workstations by several manufacturers.
While some C compilers have made serious inroads on producing very high-quality code, Fortran still

holds some advantages in this case.

4.2. C

This language has an obvious disadvantage since complex and double complex are not a part of

the language. While either of these can be defined as a structure, computing with them is inexcusably

awkward. In particular, maintaining a single set of solvers for real and complex data means writing

a set of weird macros to do floating point arithmetic. This is unacceptable.

However, not all of DAMG's or DPMG's subroutines are solvers. In fact, the multilevel algorithm

or choose which solver to call subroutines are really doing bookkeeping, not floating point arithmetic.

For these subroutines, C provides all of the necessary features to dramatically simplify the entire

calling sequence and these subroutines. Just being able to dynamically allocate and free memory
would reduce the user's frustration level with trying to guess how much memory to pass to DAMG

for scratch storage.

C can easily save addresses of objects, e.g., of subroutines or data objects, in complicated data

structures. Hence, routines can be called incrementally to pass very complex data objects to an

implementation of an abstract multilevel algorithm without any one call being very complicated.

This reduces the aggravation of using a complex program considerably.

4.3. C++

Many of the positive comments about C apply directly to C++. Classes can be constructed

instead of structures. Further, C++ usually comes with a complex class (but not necessarily in both

single and double precision), alleviating C's worst drawback.

One of C++'s strongest design features is the ability to design classes abstractly. At run time, the

136

Table 7: External subroutine information structure

struct ExternSubr {

int (*Subr)0; /* Pointer to integer function */

int *IParms; /* Pointer to integer parameters */

void *FParms; /* Pointer to floating point parameters */

float CN; /* See (4) */

float CNZ; /* See (4) */

float Cextra; /* See (4) */

int SaveScr /* Save scratch areas between calls? */

void **Scrs /* Vector of pointers to scratch areas */

int *NScrs /* Vector of lengths of scratch areas */
}

correct version of some virtual routine is accessed. This feature, while useful, is overkill in the context

of abstract multigrid solvers. The data type void _"in C, a pointer to any data type, is sufficient to

overcome many of the reasons why C++ would be useful in this context (see §4.4).

A drawback to using C++ is that there is frequently a lot of overhead hidden from the user.

This makes C++ programs run unnecessarily slower than the equivalent C or Fortran programs.

Interfacing C++ programs to Fortran programs is sometimes challenging, too.

A more serious drawback is that C++ has not yet been standardized. It is evolving with major

new versions coming out yearly. This would not be so bad except that features are sometimes dropped

or changed in incompatible ways in newer versions of the language. For someone who wants to write

a code once and then never have to touch it again, this is not a good point in C++'s favor.

4.4. C AND FORTRAN: MIXED LANGUAGE PROGRAMMING

My personal belief is that mixing Fortran+preprocessor and C is the best choice now. Implement

Algorithms MGC and NIC in C and implement the computational solvers in FORTRAN+preprocessor.

Numerous people who compute only know one language well and are not comfortable normally with
a mixed language set of programs. An interface is described at the end of this section to let these

people use what is proposed.

Suppose that we make no assumption about the language of a solver or preconditioned subroutine,

other than it really can be called from C. Then we do not know if it can dynamically allocate memory.

Hence, some mechanism must be defined for passing a block of memory. One way is to define a

structure for externally called subroutines, e.g., Table 7. The subroutine is expected to return some

indication of whether or not it worked or produced an error. The IParms and FParms are integer

and floating point vectors containing information that the specific subroutine actually needs. Setting

CN=CNZ=Cextra=O could signify "use the defaults." Note that only one ExternSubr structure has

to be created per subroutine. In this definition, Subr is a pointer (or external reference) to an integer

valued function with a fixed set of arguments. By providing an include file with an abstract solver,

a set of default ExternSubr structures can be given to the user (see Table 1).

Consider Table 4. A single structure can be defined that defines everything in a column of Table

137

4, so that information about matricescan be made easierto define. Also, pointers to the actual
floating point and integervectorsor matricescanbedefined (insteadof indicesinto a messy vector),

placing all of the relevant information in one place (see Table 6).
Information that is in both Tables 3 and 4 can be re-arranged into a single data structure as in

Table 8. A NULL pointer can be used to indicate the lack of existence of a matrix.

An implementation of Algorithm MGC can then use the information in LevInfo and the ExterSubr

structures to first allocate scratch space (if necessary), then call the solver. Assume Ip is a pointer

to level j's LevInfo structure, that lap is a pointer to Ip _ Aj's Matrix structure, lps is a pointer to

lp --,solver's ExternSubr structure, and Ipp is a pointer to either lp --,precond's ExternSubr structure

or an empty one. Then the solver is called using the following:

iret = lps --_Subr(dtype, lpp --*Subr, lp ---_SolverIters, lp ---_SolverRNorm,

lp --,matrix_vec, lap ---,MatrixType, lap ---_MatrixRows,

lap -_MatrixCols, lap -,MatrixCoeffs, lap ---_MatrixIA,

lap --_MatrixJA, lp _ Xj, lp ---* Bj, lps --_IParms,

lps _FParms, resid, scrs, nscrs, scrp, nscrp, oldscr);

Here scrs and scrp are pointers to scratch storage (with lengths nscrs and nscrp) for use by the solver

and the preconditioner subroutines. Whether or not this is the same set of scratch areas as a previous

call is indicated by oldscr. The resid argument is so that the solver has a place to return the residual,

which is used in calculating the next correction problem on a coarser level.

Numerous iterative procedures, based primarily on conjugate direction methods, require a user

callback routine to calculate matrix-vector products, thus requiring a matrix_vec argument to be

passed. Also, many iterative procedures allow a stopping criterion based on reducing the (possibly

scaled) residual norm by some amount, e.g., lp _SolverRNorm.
There is an important issue that must be addressed. There are many people who compute who

do not know C, but only Fortran. Using the data structures advocated in §4.2 would preclude these

people from using the abstract solvers. Some simple subroutines, callable from Fortran (or any

language) that build the data structures in a portable manner must be included. For example, a

Fortran program can call a C program which returns a data handle (a small integer):

mgh=mgini (levels, dtype)

This subroutine allocates space for the structures. The integer argument dtype is used to determine

the data type (c.f., the value of FLOAT in §4.1):

Dtype Data Floating point data description

1

2

3

4

<0

float

double

complex

dcomplex

user

single precision real

double precision real

single precision complex

double precision complex

-value = length in bytes

While this may seem ugly, this simple mechanism allows the C codes to be written in a "typeless"

manner. Note that a mechanism is in place for user defined data types as well.

Matrix structures are defined similarly and return a matrix handle:

mat = mgmat (mgh, type, cols, rows, ldim, coeffs, ia, ja)

Matrix handles are coupled to the data handle.

138

struct

Table 8: Level Information Structure

LevInfo {

struct ExternSubr *solver; /* Pointer to how to call solver */

struct ExternSubr *precond; /* Pointer to how to call preconditioner */

struct ExternSubr *matrix_vec; /* Pointer to how to call matrix*vector */

struct ExternSubr *changeAev; /* Pointer to how to call level changer */

int SolverIters; /* Number of iterations in solver() */

float SolverRNorm; /* How much to reduce residual norm */

int MGIters; /* Number of iterators of MGC */

int NIIters; /* Number of iterators of NIC */

void *Xj; /* Pointer to xj */

void *Bj; /* Pointer to bj */

int NXj; /* Length of xj */

int NBj; /* Length of bj */

int NZAj; /* Number of nonzeroes in Aj */

struct Matrix *Aj; /* Pointer to Aj representation */

struct Matrix *Rj; /* Pointer to T_j representation */

struct Matrix *Pj; /* Pointer to 7_j representation */

struct Matrix *NIPj; /* Pointer to AfZI_j representation */

_(FAS) ,/struct Matrix *FASRj; /* Pointer to ._j representation
);

Subroutines are declared through another C routine:

real CN, CNZ, Cextra

external rtn

w..

(set CN, CNZ, and Cextra)

isubr = mgsubr (mgh, rtn, iparms, fparms, CN, CNZ, Cextra, savscr
)

Note that only the addresses of rtn, iparms, and fparms are saved by mgsubr, not the contents. A

subroutine handle' is returned which is coupled to the data handle. Use of the Fortran EXTERNAL

declaration allows subroutine addresses to be passed.

Another routine can be called to setup a LevInfo structure for level j:

iret -- mglevi (mgh, j, isolver, iprecond, imatv, ichlev,

* nsolviters, rnorm, mgiter, niiter, xj, bj, nxj, nbj,
,

nza, mata, matr, matp, matnip, matfas)

Here, isolver, iprecond, imatv, and ichlev are the return values from mgsubr or 0 if none is wanted.

Also, mata-matfas are return valves from mgmat or 0 if no matrix exists. The x_j and b_j are the

addresses of the first elements of xj and bj. These may be indexed as X(ixb) and B(ixb), respectively,

depending on the user's programming style. A nonzero return value means an error occurred.

Finally, the multilevel subroutines can be called-

iret -- mgmeth (mgh, iparm, resid)

where iparm is a simplification of the one in Table 2 (it only needs to contain mgalg, startl, levelc,

levelf, and info, but is extendable). The last argument, resid, is an array where the final residual is
returned. A nonzero return value means an error occurred.

139

To free space, a final call can be made:

iret = mgdone (mgh) A nonzero re-

turn value means an error occurred. Obviously, this last call is unnecessary if the program immedi-

ately ends.
The advantage of this approach is that subroutines can be written in whatever language makes the

most sense. Further, people who program in C or C++ will not be penalized by having to construct

data structures that only make sense in Fortran.

The worst disadvantage is that to compile the library, some knowledge is needed about how

the local compiler treats subroutine names. There are three common methods in use and on many

platforms this can be determined automatically. On a very small number of machines, Fortran and

C programs cannot he mixed conveniently or at all; these machines will be ignored by this author.

5. CONCLUSIONS

In this paper, abstract multilevel methods were reviewed. Two versions of the author's publicly

distributed multilevel codes (Madpack) were discussed. From the experience of these codes, a model

of a better approach using a mixed language approach (C and Fortran+preprocessor) was proposed.

Implementing such a system, starting from having already working solvers (e.g., [8], [3], and [4]) is a

simple exercise for an expert in C and Fortran programming.

REFERENCES

[1] C. C. Douglas. Multi-grid algorithms with applications to elliptic boundary-value problems.

SIAM J. Numer. Anal., 21:236-254, 1984.

[2] C. C. Douglas and J. Douglas. A unified convergence theory for abstract multigrid or multilevel

algorithms, serial and parallel. SIAM J. Numer. Anal., 30:136-158, 1993.

[3] C. C. Douglas. DAMG: an abstract multilevel solver. Technical Report YALEU/DCS/TR-950,

Department of Computer Science, Yale University, New Haven, 1993.

[4] C. C. Douglas. DPMG: a multigrid solver for the poisson equation in two and three dimensions.

Technical Report YALEU/DCS/TR-951, Department of Computer Science, Yale University,

New Haven, 1993.

[5] F. Chatelin and W. L. Miranker. Acceleration by aggregation of successive approximation

methods. Lin. Alg. Appl., 43:17-47, 1982.

[6] C. C. Douglas. Mgnet Digests and Code Repository. Monthly digests subscribed to by sending a

message to mgnet-requests_cs.yale.edu and an anonymous ftp site (casper.cs.yale.edu) for codes

and papers on multigrid and related topics.

[7] C. C. Douglas. MGNet: a multigrid and domain decomposition network. ACM SIGNUM

Newsletter, 27:2-8, 1992.

140

[8] C. C. Douglas. Madpack (version 2) users' guide. Technical Report 16169, IBM Research

Division, Yorktown Heights, New York, 1990. The most up to date source code is available

through anonymous ftp from casper.cs.yale.edu in the directory mgnet/madpack2. It is also

available through the netlib service.

[9] R. E. Bank and R. K. Smith. General sparse elimination requires no permanent integer storage.

SIAM J. Sci. Slat. Comp., 8:574-584, 1987.

[10] R. E. Bank and C. C. Douglas. An efficient implementation of the SSOR and ILU precondition-

ings. Appl. Numer. Math., 1:489-492, 1985.

[11] S. C. Eisenstat, H. E. Elman, M. H. Schultz, and A. H. Sherman. The (new) Yale sparse matrix

package. In A. L. Schoenstadt and G. Birkhoff, editors, Elliptic Problem Solvers II. Academic

Press, New York, 1983.

[12] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse matrix package:

II. the nonsymmetric codes. Technical Report 114, Department of Computer Science, Yale

University, New Haven, 1977.

[13] J. H. Hyman. Mesh refinement and local inversion of elliptic differential equations. J. o f Comput.

Phys., 23:124-134, 1977.

[14] C. C. Douglas. Multi-grid algorithms for elliptic boundary-value problems. PhD thesis, Yale

University, May 1982. Also, Computer Science Department, Yale University, Technical Report

223.

[15] C. C. Douglas. Some remarks on completely vectorizing point Gauss-Seidel while using the

natural ordering. Technical Report YALEU/DCS/TR-943, Department of Computer Science,

Yale University, New Haven, 1992.

141

NUMERICAL SOLUTION OF FLAME SHEET PROBLEMS WITH AND

WITHOUT MULTIGRID METHODS*

Craig C. Douglas

Department of Computer Science

Yale University

New Haven, Connecticut

Alexandre Ern

Department of Mechanical Engineering

Yale University

New Haven, Connecticut

SUMMARY

Flame sheet problems are on the natural route to the numerical solution of multidimensional

flames, which, in turn, are important in many engineering applications. In order to model the flame

structure more accurately, we use the vorticity-velocity formulation of the fluid flow equations

instead of the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear

coupled elliptic partial differential equations involves a pseudo transient process and a steady state

Newton iteration. Rather than working with dimensionless variables, we introduce scale factors

that can yield significant savings in the execution time. In this context, we also investigate the

applicability and performance of several multigrid methods, focusing on nonlinear damped Newton

multigrid, using either one way or correction schemes.

1. INTRODUCTION

Recent advances in the development of computational algorithms and supercomputers have

provided new extremely powerful tools with which to investigate chemically reacting systems that

were computationally infeasible only a few years ago (see [1], [2], [3], and [4]). The difficulties

associated with solving high heat release combustion problems stem from the large number of

dependent unknowns, the nonlinear character of the governing partial differential equations and the

different length scales present in the problem. Typical combustion problems may involve, in

addition to the temperature and the fluid dynamics variables, dozens of species defined at each grid

point and require the resolution of curved fronts whose thickness is on the order of thousandths of

the domain diameter, across which critical fields vary by orders of magnitude. As a result of the

fluid dynamics-thermochemistry interaction and its effect on the flame structure, the governing

*This work was supported in part by CERMICS, ENPC, IBM, the Office of Naval Research, and the Department
of Energy.

pRBC_D_G pAGE BL.ANI_. NOT FH_MED "PAGEg_'_NTENTiOI_ALLY

143

equations are strongly coupled together and are also characterized by the presence of stiff source

terms and nonlinearities_ Hence, Newton methods with sophisticated control strategies, including

damping and adaptive continuation techniques, are needed. However, in spite of these difficulties,

the numerical modeling of multidimensional laminar (or turbulent) flames has been recently

motivated by the growing demand for high fuel efficiency combined with low pollutant emission.

While three dimensional turbulent flame simulations still remain infeasible on current

supercomputers, axisymmetric laminar diffusion flames constitute a problem of practical

importance since they are the flame type of several combustion devices. Hence, new robust

numerical models of such a system will provide an efficient tool to probe flame structures and

investigate the coupled effects of complex transport phenomena with chemical kinetics.

As part of an ongoing effort to expand combustion modeling capabilities, we investigate

computationally the performance of several multigrid techniques (see [5], [6], [7], and [8]) combined

with the numerical solution of combustion related problems. In the present work, we consider a

flame sheet problem rather than a finite rate chemistry model for an axisymmetric laminar diffusion

flame in order to alleviate the memory and CPU requirements on the computer simulations. The

numerical techniques presented in this paper, however, also apply to combustion problems with

finite rate chemistry [9]. We note that a flame sheet model adds only one field to the hydrodynamic

fields that describe the underlying flow. A detailed kinetics model adds as many fields as species

considered in the kinetic mechanism, each with its own coupled conservation equation. Since the

CPU time and the memory requirements scale with the square of the number of dependent

unknowns, the flame sheet model considerably reduces the cost of the computer simulations while

still keeping the coupling and nonlinearity features associated with the original problem.

In the flame sheet model, the chemical reactions are described with a single one step irreversible

reaction corresponding to infinitely fast conversion of reactants into stable products. This reaction

is assumed to be limited to a very thin exothermic reaction zone located at the locus of

stoichiometric mixing of fuel and oxidizer, where temperature and products of combustion are

maximized. To further simplify the governing equations, one neglects thermal diffusion effects,

assumes constant heat capacities and Fick's law for the ordinary mass diffusion velocities, and takes

all the Lewis numbers equal to unity [2]. With these approximations, the energy equation and the

major species equations take on the same mathematical form and by introducing Schvab-Zeldovich

variables, one can derive a source free convective-diffusive equation for a single conserved scalar.

Although no information can be recovered about minor or intermediate species in the flame sheet

limit, the temperature and the stable major species profiles in the system can be obtained from the

solution of the conserved scalar equation coupled to the flow field equations. Further, the location

of the physical spatially distributed reaction zone and its temperature distribution can be

adequately predicted by the flame sheet model for many important fuel-oxidizer combinations and

configurations. Since being studied as a means of obtaining an approximate solution to use as an
initial iterate for a one dimensional detailed kinetics computation in [10], flame sheets have been

routinely employed to initialize multidimensional diffusion flames.

In §2, a comparison of three possible formulations of the problem is presented, including the

governing equations and boundary conditions. In §3, the general solution algorithms are presented,

including a damped Newton method, Jacobian evaluation, linear solvers (Bi-CGSTAB or GMRES),

and the pseudo transient process. In §4, various multigrid methods are discussed in the context of

flame sheets. In §5, numerical experiments are presented. Finally, in §6, some conclusions are

reached.

144

2. VORTICITY-VELOCITY FORMULATION

In diffusion flamesthe combustionprocessis primarily controlledby the rate at which the fuel
and oxidizer arebrought together in stoichiometric proportions. Thus, independentlyof the
submodelusedfor the chemicalkinetics (finite rate vs. flamesheet),the overall accuracyof the
numerical solution strongly dependson an accuraterepresentationof the flow field. Hence,a brief
discussionon the variousformulationsof the Navier-Stokesequationsin the context of laminar
combustionproblemsis of order.

The first numericalsolution of two dimensionalaxisymmetriclaminar diffusion flameswas
obtained usingthe streamfunction-vorticity formulation [2]. This approachis attractive for three
reasons:

1. It eliminatesthe coupling associatedwith the presenceof the pressurein the momentum
equations.

2. It reducesthe numberof equationsto be solvedby one.

3. It alsohas the important advantagethat continuity is explicitly satisfiedlocally.

However,the specificationof boundary conditions meetswith difficulties when one attempts to
specify vorticity boundary values.In particular, a zerovorticity boundary condition at the inlet of
the computational domain results in a rough approximationof the true solution, thus severely
altering the resulting velocity field [3]. On the other hand, the specificationof vorticity boundary
valuesin terms of the streamfunction requiresthe discretizationof secondorder derivatives, thus
yielding off diagonal terms in the Jacobianmatrix which result in having to solveseverelyill
conditioned linear systems.Another important difficulty associatedwith the

streamfunction-vorticity approachis that the extensionto three dimensionalconfigurationsthroufih
the introduction of a vector potential insteadof the scalarstreamfunction is cumbersomeand
computationally expensivesinceit introducesadditional dependentvariables.

Alternatively, a primitive form of the Navier-Stokesequationshasbeenrecently implementedfor
severalaxisymmetric laminar diffusionflames (see[3] and [4]). In this approach,the velocity field is
computedusing the momentumequationsand the pressurefield is recoveredfrom the continuity
equation. As a result of the differencein nature of the governingequations,the discretepressure
field has to be determined in a mannerconsistentwith the discretecontinuity equation. This can
be achievedto machinezeroon a staggeredgrid. However,staggeredmeshschemesdo alsohave
drawbacksin complexgeometriesconfigurationswherenon-orthogonalcurvilinear coordinatesare
usedand when using sophisticatednumericaltechniquessuchasmultigrid methods (see[11]and
[12]). Although feasible([13] and [14]), the developmentof staggered grid based multigrid solvers is

computationally cumbersome since the transfer operators between levels do not coincide for each

dependent variable in order to preserve a staggered grid arrangement on all levels. This difficulty

may even be further exacerbated in three dimensional configurations. Finally, it is worthwhile to

note that two and three dimensional solutions of incompressible viscous flows on a nonstaggered

grid have been reported (see [11] and [12]). However, the extension of such procedures to highly

compressible systems where the density can vary by several orders of magnitude inside the

computational domain may still yield some complications.

145

The vorticity-velocity formulation constitutes a third approach to the numerical solution of the

Navier-Stokes equations. A review of incompressible fluid flow computations using this formulation

is well documented in [15]. The vorticity-velocity formulation of the Navier-Stokes equations has

been recently extended to two and three dimensional compressible flows and implemented for the

numerical solution of flame sheet problems (see [16] and [17]). As motivated in these references, a

vorticity-velocity formulation allows replacement of the first order continuity equation with

additional second order equations. Whereas the streamfunction-vorticity formulation also

accomplishes the same replacement in two dimensions, vorticity-velocity is extensible to three and

allows more accurate formulation of boundary conditions in a numerically compact way.

Furthermore, off diagonal convective terms in off diagonal blocks that exert a strong influence in a

streamfunction-vorticity formulation disappear. Another important attractive feature of the

vorticity-velocity formulation is that the governing equations can be discretized on a nonstaggered

grid, thus allowing the implementation of a multigrid algorithm at a relatively low overhead in

additional programming (see [16], [17], and [18]).

The flame sheet governing equations consist of the conservation of total mass, momentum and a

conserved scalar equation. The conservation of total mass and momentum equations constitute the

flow field problem and are formulated using the vorticity-velocity formulation of the compressible

axisymmetric Navier-Stokes equations. A source free convective-diffusive equation for a conserved

scalar is solved coupled together with the flow field equations and the temperature and major

stable species profiles in the system can be recovered from the conserved scalar (see [2], [19], and

references therein). We introduce the velocity vector v = (vr, vz) with radial and axial components

vr and vz, respectively, and the normal component of the vorticity

_r OV z= (1)
Oz Or

The vorticity transport equation is formed by taking the curl of the momentum equations, which

eliminates the partial derivatives of the pressure field. A Laplace equation is obtained for each

velocity component by taking the gradient of (1) and using the continuity equation. This yields the

governing equations in the following form:

Or 2 Oz _ Oz r Or ---- Or '

q__zv. OwOr _ -- Or r Oz Oz

2 v,- - w,

1 0 ir ^D os_ o os 98 os

where p is the density, # the viscosity, g the gravity vector, div(v) the cylindrical divergence_ of the

velocity vector, S the conserved scalar, D a diffusion coefficient, and the components of V_ are

(oa-_**,-oP-_). The density is computed using the perfect gas law and, in the low Mach numbers

approximation valid for these flame configurations, one can use the outlet (constant) pressure.

146

Table 1: Boundary conditions

Axis of symmetry (r = 0) vr = 0 o.= _ 0 w = 0 os 0o--W- 0-7 --
Outer zone (r = Rma_) o____= 0 o__- = 0 w = _ S = 0

Or Dr 0Z

ovr S=S°(r)Inlet (z -- O vr =- O vz -- v°(r) uJ -= oz o_

Exit (z = L) v_ = 0 _ = 3 o_z,_- 0 os___;--- 0

Consequently, in the above formulation, the pressure field is eliminated from the governing

equations as a dependent unknown and can berecovered, once a computed numerical solution of

(2) is obtained, by solving a Laplace type equation derived by taking the divergence of the
momentum equations [15].

Recalling that all of the Lewis numbers are taken equal to unity, the quantity pD is given by the

viscosity coefficient tt divided by a reference Prandtl number and we use an approximate value for

air, Pr = 0.75. Hence, in this model, the determination of all the transport coefficients is reduced

to the specification of a transport relation for the viscosity and we use the same power law as the

one given in [2]. We also note that, due to the high temperature gradients present in the system,

the viscosity derivatives in the right hand side of the vorticity transport equation (2) can not be

neglected. Our numerical experiments show that such an approximation leads to significant

differences in the numerical solution, especially for the radial velocity profile. Finally, a conservative

form of the convective terms can also be considered but it yields slower convergence rates without
any significant changes in the computed solution.

A schematic of the physical configuration is given in Figure 1. It consists of an inner cylindrical

fuel jet (radius R1 --0.2cm), an outer co-flowing annular oxidizer jet (radius Ro =2.5cm) and a

dead zone extending to Rm_x --7.5cm. The inlet velocity profile of the fuel and oxidizer are a plug

flow of 35cm/s. This yields a typical value for the Reynolds number of 550. Further, the flame

length is approximately LI =3cm [19] and the length of the computational domain is set to

L =30cm. Although the fuel and oxidizer reservoirs are at room temperature (300 °Kelvin), we need

to assume, in the flame sheet model, that the temperature already reaches the peak temperature

value along the inlet boundary at r -- RI. This peak temperature is estimated for a methane-air

configuration to be 2050°K. Hence, the inlet profile of the conserved scalar, S°(r), is specified in

such a way that the resulting temperature distribution blends the room temperature reservoirs and

the peak temperature by means of a narrow Gaussian centered at RI. The narrowness of the

Ganssian profile has a relevant influence on the cMculated flame length, so that its parameters have

to be determined appropriately [19]. The boundary conditions are summarized in Table 1. Finally,

we note that the use of the definition of the vorticity (1) for the vorticity outlet boundary condition

does not yield any relevant changes in the computed solution.

3. GENERAL SOLUTION ALGORITHM

The partial differential equations (2) together with the boundary conditions (see Table 1) are

discretized on a two dimensional tensor product grid. A solution is first obtained on an initial

coarse grid. Additional mesh points are then adaptively inserted in regions of high physical activity

by equidistributing weight functions of the local gradient and curvature of the numerical solution

147

dead zone

s _

J

air

I

I
I

!

I _ I _.'_

I I

1 i ROI !

L--_R I
t

' lI

I

i

fuel

R max

dead zone

Figure 1: Physical configuration (not in scale)

[2], which yields a 129 x 161 grid. To verify the grid independence of the solution, we refined this

grid to 257 x 219 points. The relative error between the two solutions was found to be lower than

2% and differences were only encountered in the outflow region where the grids were still kept

somewhat coarse. However, the flame length and the temperature distribution inside the flame were

accurately predicted on the 129 x 161 grid. Hence, this grid will be considered as the finest grid in

the present work.
The spatial operators in the partial differential equations (2) are approximated with finite

difference expressions. Diffusion and source terms are evaluated using centered differences. We

adopt a monotonicity preserving upwind scheme for the convective terms (see [20, p. 304]), for

instance,

OS = max{(v,.),_ ½,O} S, - S,_x _ max{-(v,-),+_, O} S,+, - S, (3)
Ur"_ Ti -- Ti-1 Ti+I -- ri

The boundary conditions given in Table 1 involve only zero or first order derivatives. For the latter

terms, first order back or forward differences can be used, except for two boundary conditions which

require a more accurate treatment. First, as motivated in [17], the vorticity inlet boundary
condition is discretized using the vorticity values at the first two lines of the computational domain.

_ as follows:
More specifically, at an inlet point (i, 1), we discretize the equation w = oz - or

+ = (v,),+,- (4)
z2 - zl ri+l - r_-i

It is also of critical importance for the accuracy of the numerical solution that the axial velocity

boundary condition on the axis of symmetry be evaluated using a second order scheme. At any

148

point (1, j), we have

(vz)2 - (vz)a (r2 - rl) 2 02%= "
The right hand side is evaluated using the Laplace equation for vz in (2). On the axis of symmetry,
this reduces to

Ors Oz2 Or Oz _ p Oz] "

The radial derivative of the vorticity can be discretized with a first order difference while still

yielding an overall second order accuracy for vz. By comparing our numerical solutions with a

primitive variable solution of the same problem [19], we found that these two boundary conditions

exerted a strong influence on the overall accuracy of the numerical solution.

The discretization of the partial differential equations (2) together with the boundary conditions

(Table 1) yields a set of algebraic equations of the form F(U) = 0, which is solved using a damped
Newton method

J(U'_)AU '_ -- -)_nF(Un), n = O, 1, . . . , (5)

with convergence tolerance IIAU"IIs < 10 -5. The Jacobian matrix J(U") is computed numerically

using vector function evaluations and the grid nodes are split into nine independent groups which

are perturbed simultaneously (see [2] for more details). Selected cases were rerun with a more

stringent convergence tolerance of 10 .6 , without any significant changes in the numerical solution.

Rather than working with dimensionless variables, we introduce a scale factor st, I E [1, nc], for

each dependent variable (no = 4 for the flame sheet problem). The norm of the discrete vector AU n

is then given by

II U"lls = (cqAU"(l,i,j)) 2. (6)
Vie[1,-r] je[1,n_lle[1,_]

It is worthwhile to point out that an appropriate choice of the scale factors can yield significant

savings in the execution time. This point will be further illustrated with numerieal experiments in
§5.1.

The linear system (5) is inverted at each Newton step through an inner iteration. This inner

iteration may consist of either the Bi-CGSTAB algorithm [21] or a restarted version of GMRES [22]

combined with a Gauss-Seidel (GS) left preconditioner. This choice is motivated in [16] through

various numerical simulations of flame sheet problems. Although a single Bi-CGSTAB/GS iteration

requires approximately 1.5 times more time than an average GMRES/GS iteration, both algorithms

yield total execution times which are in general within a few percent of each other. The former has

lower memory requirements (see the end of §5.2 for more details). The convergence of the inner

iteration is based on the norm of the left preconditioned linear residual using an absolute tolerance

equal to one-tenth of the Newton tolerance. Such termination criterion brings enough information

on the update vector AU n back to the Newton iteration (see [16] for more details).

Due to the nonlinearity of the original problem, a pseudo transient process is used to produce a

parabolic in time problem and bring the starting estimate into the convergence domain of the

steady Newton method. The original nonlinear elliptic problem is cast into a parabolic form by
appending a pseudo transient term ou-ST to the origifial set of algebraic equations F(U) = O, and a

fully implicit scheme solves (again with Newton method)

U-+a _ U -

(U n+) = F(U n+a) + At.+ 1 - 0, (7)

149

where At "+1 is the (n + 1) _t time step. The number of time steps needed to bring the initial

guessed solution into the convergence domain of the steady Newton iteration depends on the size of

the grid, and the coarser the grid, the fewer relaxation steps are necessary. This point will be

further discussed in §5.2.

4. MULTIGRID TECHNIQUES

The multigrid philosophy applied to our model problem is derived from [5], [7], and [8]. We

assume that there is a sequence of spaces M_, i = 1, ..., k, where the M_ approximate M1. We

further suppose there exist _'cstriction and prolongation mappings

TCi" J_Ai--*21zii+l, l<i<k-1,7)i: M_--_.M_-I, 2<i<k.

between neighboring spaces. We also assume there is a sequence of problems (5) represented by Ji-

A multilevel correction algorithm, where the finest level is level 1 and the coarsest level is level k,

is simply defined by

L--l, {njb)Algorithm MGC (lev, {Jj, xj, b_ k k

1. xle,, *-- Solver_v(J,_,,, xle,,, bl_,,)

2. If lev < k, then repeat 2a-2d until some condition is met:

2a. Xlev+l 4- O, b_e_,+l _-- 7_lev(ble_, -- Jl_vXle.)

(nj}j_-i),bJL=.2b. MGC (lev + 1, {Jj, x i k k

2C. Xle v 4-- Xlev _ "_lev+lXlev+l

2d. xl_,, *'-- Solver_,(J_,_,, xl_,,, bt_,,)

In our case, the solver on every level is either Bi-CGSTAB/GS or GMRES/GS. In Step 1 on level k,

our stopping criterion was that the linear residual was adequately reduced (see §3). On the other

levels, the stopping criteria was either an upper limit on the number of iterations or that the linear

residual was adequately reduced.
A common condition in step 2 is to do steps 2a-2d some specified number of times (e.g., 0 for

one way multigrid, 1 for a V Cycle, or 2 for a W Cycle). In §5.2, a V Cycle took less overall time

than any other choice for a condition in step 2. However, many V Cycles were necessary, starting

from the finest level (see the definition of Algorithm NIC below).

Brandt's FAS algorithm [6] is a nonlinear variant of Algorithm MGC. A nonlinear smoother is

used in steps 1 and 2d, the actual solution is computed on every level, and corrections are

computed before interpolation in step 2c (see [23] for more details).
We use a nested iteration multilevel algorithm since we do not have an adequate initial guess to

the solution initially.

k k-I{nj}j= Algorithm NIC (lev, {Jj,xj,bj}k=l, {T'j}j=2,)

1. MGC (k, {J_,xj, k k k-1bJb-- ,)
2. Do steps 2a-2b with lev = k - 1,..., 1:

2a. XIe v 4"- _[:)|ev+lXlev+l
k k k-1

2b. MGC (lev, (g_,xj,b3}j=l, {:P3}_=2, {72_-}_=_)

150

A damped N(wto_ multil_eel algorithm is defined by introducing an additional step before each

reference to Algorithm MGC in just Algorithm NIC. Before each reference to Algorithm MGC, a

Jacobian is formed and a damped Newton step is performed. The last Jacobian on a level is saved

for use in multilevel correction steps. A on¢ u,(L!l mulliIevd algorithm means that Algorithm MGC

never performs any portion of its step 2 as part of its use by Algorithm NIC. We always use a

damped Newton iteration, but we drop the term damped Newton when referring to one way
multilevel methods.

The difference between FAS and damped Newton multilevel methods is easy to categorize. FAS

uses a nonlinear iterative method (e.g., nonlinear Ganss-Seidel) while damped Newton uses

standard linear solvers. When evaluating the nonlinear function is inexpensive, FAS usually

produces an approximate solution faster than the damped Newton multilevel method. However,

when the function evaluations are expensive, the damped Newton multilevel method usually

produces an approximate solution faster than FAS. In a typical diffusion flame problem with finite

rate chemistry [9], the function evaluations are horrendously expensive, so we did not explore FAS.

For a flame sheet problem solved using FAS, see [24].

5. NUMERICAL RESULTS

In this section, we present several numerical results obtained on an IBM RISC System/6000

(model 560). In §5.1, we focus on unigrid calculations and emphasize the importance of the scale

factors at in (6) in order to appropriately monitor the convergence of the outer damped Newton

iteration. Our numerical experiments show that the overall execution times can be decreased by up

to an order of magnitude by taking a large scale factor for all of the vorticity corrections in the

computational domain. The execution times can be decreased by an additional factor of six and ten

by combining the unigrid numerical procedure with damped Newton multilevel iterations, using

either one way or correction schemes, respectively. The corresponding numerical results are

presented in §5.2.

5.1. Unigrid tests

In this section, we discuss the influence of the scale factors at in (6) on the whole convergence

history of the numerical solution. By modifying these scale factors, we shift the balance of work

required in the outer Newton iteration and in the inner linear iterations between the different

degrees of freedom present in the system. In particular, a large scale factor for the vorticity

component asks for less accuracy in the computed vorticity corrections that are brought back to the

Newton iteration, thus reducing considerably the amount of work at each Newton step. As

indicated in our numerical experiments, this does not yield any loss of accuracy for the other

components of the numerical solution (the radial and axial velocity and the conserved scalar).

Another important consequence is that much larger time steps can be taken, even at the beginning

of the pseudo transient process when the solution is approximated with a very "coarse" initial

guess. Furthermore, only a few time steps are required (typically 20) before the numerical solution

already lies in the convergence domain of the steady Newton iteration (5). With lower scale factors

for the vorticity, most of the CPU time is spent during the pseudo transient iterations, since much

151

smaller time stepsneedto be taken and the convergencedomainof the iteration scheme(5)
becomesmuchnarrower. Our numericalexperimentsindicate that a scalefactor for the vorticity of
103can yield savingsin CPU time of up to anorder of magnitudewithout altering the velocity and
temperature profiles of the numericalsolution.

5.2. Multigrid acceleration

In this section,wepresentfurther improvementsin the total executiontimes obtainedby
combiningthe numerical proceduredescribedin §3and §5.1with dampedNewtonmultilevel
iterations, using either oneway or correctionschemes.In all of the results, the speedupsrepresent
ratios of CPU times.

We considerthe finest level to be a 129 x 161 grid and we construct three additional coarser

grids by successively discarding every other node from one grid to the coarser one. This yields a

coarsest grid of 17 x 21 points. It is worthwhile to note that the use of even coarser grids in these

problems meets with difficulties since the calculated flame speeds become excessively large due to

the influence of numerical diffusion and/or conduction (see [25]) and the Newton iteration (5) fails

to converge.

In the one way nonlinear multigrid approach, we solve the nonlinear problem F(U) ----0 in one

cycle, starting at the coarsest level and ending at the finest. Asymptotically, as the mesh spacing

approaches zero, the interpolant of the computed solution o_ one grid lies in the convergence

domain of Newton method on the next finer grid [26]. In our numerical calculations, this was found

to be the case for all levels considered, when using either cubic or linear interpolation between

levels. As a consequence, the pseudo transient process needs only to be performed on the coarsest

level, in order to bring the initial guess into the convergence domain of the steady Newton iteration

on this level. This procedure is particularly attractive for two reasons:

1. By time stepping on the coarsest level, we reduce considerably the amount of work spent in

the pseudo transient phase.

2. On coarser grids, less computer time is needed to solve (5).

The first set of numerical experiments was performed using Bi-CGSTAB/GS as the linear

smoother. The numerical results obtained during the pseudo transient phase are presented in

Table 2. On our workstation, the time stepping requires 15 seconds on the coarsest level as opposed

to over 40 minutes on the finest, thus yielding a speedup of 166. Table 3 breaks down the numerical

results for the steady state Newton iterations. Note that the CPU time spent during the pseudo

transient process has been included in the computation of the speedups presented in Table 3. A

speedup of a factor of four is achieved using the one way nonlinear multigrid on two levels, which is

due to the significant decrease of smoothing steps done on the finest!evel: With three and four

levels, we obtained speedups of 5.4 and 5.8, respectively. The four level multigrid improves only

marginally the execution times, since it decreases the CPU time spent on the third level, while most

of the work is already concentrated in the smoothing iterations on the finest level. Finally, it is

interesting to note that linear interpolation between levels yields lower execution times than cubic

interpolation when Bi-CGSTAB/GS is used as the linear smoother.

We also implemented the one way nonlinear multigrid algorithm using GMRES/GS as the linear

smoother with 25 Krylov vectors. This requires 15 Mb of additional storage for the Krylov space.

152

Table 2: Numerical results for oneway nonlinear multigrid during the pseudotransient phasewith
Bi-CGSTAB/GS asthe linear smoother

Operation

BiCGSTAB/GS iterations
Speedupin time

Levels
1 2 3 4

634 352 217 160
1.0 6.6 34.6 166.0

Table 3: Numerical results for oneway nonlinear multigrid

Operation

smooth(1
smooth(2)
smooth(3)
smooth(_l)
Speedupin time

Levels
1 2 3 4

1632 371 384 378
- 723 390 380
- - 326 346
- - - 192

1.0 4.2 5.4 5.8

Smooth(i) representsthe total number of Bi-CGSTAB/GS stepsdoneon level i during the steady
state Newton iterations.

We found in our numerical experiments that the use of cubic interpolation between levels yielded

lower execution times than linear interpolation and that it was more efficient to adaptively increase

the time step slightly faster during the pseudo transient phase with respect to the Bi-CGSTAB/GS

calculations. The numerical results are given in Tables 4 and 5. We obtain a speedup of 160 for the

pseudo transient phase on four levels. As indicated in Table 5, the total execution times delivered

are greater than the ones obtained with Bi-CGSTAB/GS. This latter algorithm seems therefore to

be a preferable linear smoother when using one way nonlinear multigrid. Note also that the unigrid
calculation fails to converge since GMRES/GS stagnates.

In order to solve the linear systems more efficiently, especially the one on the finest level, we

perform damped Newton multilevel iterations, making use of the Jacobians computed on all levels

coarser than the current one (see algorithm MGC in §4 for more details). The numerical results

Table 4: Numerical results for one way nonlinear multigrid during the pseudo transient phase with
GMRES/GS as the linear smoother

Operation Levels

2 3 4

GMRES/GS iterations 572 367 258

Speedup in time 7.2 34.6 159.6

153

Table 5: Numerical results for one way nonlinear multigrid

Operation

smooth(l)

smooth(2)

smooth(3)

smooth(4)

Speedup in time

Levels

2 3 4

530 945 945

1559 592 590

- 481 825

- - 161

3.2 4.2 4.2

Smooth(i) represents the total number of GMRES/GS steps done on level i during the steady state
Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

Table 6: Numerical results for damped Newton multilevel iterations

Operation Levels
1 2 3 4

smooth(1 1632 238 268 243

smooth(2) - 1096 645 673

smooth(3) - - 861 1243

smooth(4) - - - 799

Speedup in time 1.0 4.8 6.2 6.6

Smooth(i) represents the total number of Bi-CGSTAB/GS steps done on level i during the steady
state Newton iterations.

presented in Table 6 are obtained using 30 steps of Bi-CGSTAB/GS as the linear smoother, which

may seem at first glance to be an excessive number of iterations. We obtain a speedup of 6.6 when

using four levels. A comparison of Tables 3 and 6 shows that the balance of smoothing iterations is

shifted towards the coarsest levels when using damped Newton multilevel iterations, thus yielding

lower execution times (approximately 12%) than the ones obtained with the one way nonlinear

multigrid. However, it is worthwhile to point out that this improvement comes at the expense of

storage since the one way nonlinear multigrid requires 39 Mb and the damped Newton multilevel

iterations require up to 62 Mb. This difference is due mainly to the fact that damped Newton

multilevel correction methods require saving a Jacobian on every level instead of just one.

Finally, we also performed damped Newton multilevel iterations using GMRES/GS as the linear

smoother. In our numerical experiments, we found that the choice of 25 Krylov vectors delivered

lower execution times than 20 or 30. We also used cubic and linear interpolation in algorithm NIC

and MGC, respectively (see §4). The numerical results are presented in Table 7. We obtain a

speedup of a factor of 10.5 when using four levels, thus significantly improving the maximum

speedup obtained with Bi-CGSTAB/GS. Using damped Newton multilevel iterations and

GMRES/GS as the linear smoother, the whole numerical solution for the flame sheet problem on a

129 x 161 grid is obtained in about 9 minutes on our workstation. On a supercomputer, the CPU

154

Table 7: Numerical results for damped Newton multilevel iterations

Operation

smooth(l)

smooth(2)

smooth(3)

smooth(4)

Speedup in time

Levels

2 3 4

218 216 219

2272 565 585

- 1179 1159

- - 1020

5.1 9.9 10.5

Smooth(i) represents the total number of GMRES/GS steps done on level i during the steady state

Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

times will drop dramatically.

6. CONCLUSIONS

In this paper, we presented a new numerical procedure to solve flame sheet problems. The

governing equations use the vorticity-velocity formulation of the Navier-Stokes equations coupled

together with a conserved scalar equation. By appropriately monitoring the norm of the correction

vector in the damped Newton iteration, significant savings in the overall execution time can be

obtained. These performances can be further improved by combining the above numerical

procedure with one way nonlinear multigrid and damped Newton multilevel iterations. The latter

approach yields lower execution times than the former but at a higher cost in storage. With four

levels of grids, a speedup of 5.8 is obtained with a one way nonlinear multigrid and

Bi-CGSTAB/GS as the linear smoother. Similarly, damped Newton multilevel iterations and

GMRES/GS as the linear smoother obtain a speedup of more than a factor of 10. For three

dimensional problems, we should obtain speedups much greater than 10.

REFERENCES

[1] M. D. Smooke and V. Giovangigli. Numerical modeling of axisymmetric laminar diffusion

flames. IMPA('T Conq_ut. Sci. Engng., 4:46-79, 1992.

[2] M. D. Smooke, R. E. Mitchell, and D. E. Keyes. Numerical solution of two-dimensional

axisymmetric laminar diffusion flames. Combusl. Sci. and T_ch., 67:85-122, 1989.

[3] Y. Xu and M. D. Smooke. Application of a primitive variable Newton's method for the

calculation of an axisymmetric laminar diffusion flame. J. Compul. Phy._., 104:99-109, 1993.

[4] Y. Xu and M. D. Smooke. Primitive variable modeling of multidimensional laminar flames.

(bmbust. Sci. and T_cb., 88:1-25, 1993.

155

[5] R. E. Bank and D. J. Rose. Analysis of a multilevel iterative method for nonlinear finite

element equations. :llalh. Comp., 39:453-465, 1982.

[6] A. Brandt. Multi-level adaptive solution to boundary-value problems. Math. Corop.,

31:333-390, 1977.

[7] C. C. Douglas. Multi-grid algorithms with applications to elliptic boundary-value problems.

SIAM J. Numer. Anal., 21:236-254, 1984.

[8] C. C. Douglas and J. Douglas: A unified convergence theory for abstract multigrid or

multilevel algorithms, serial and parallel. SIAM J. Numcr. Anat., 30:136-158, 1993.

[91 A. Era, C. C. Douglas, and M. D. Smooke. Numerical simulation of laminar diffusion flames

with multigrid methods. In preparation.

D. E. Keyes and M. D. Smooke. Flame sheet starting estimates for counterflow diffusion flame

problems. J. Comput. Phy.% 73:267-288, 1987.

S. W. Armfield. Finite difference solutions of the Navier-Stokes equations on staggered and

non-staggered grids. Computer Fhlid_, 20:1-17, 1991.

F. Sotiropoulos and S. Abdallah. A primitive variable method for the solution of

three-dimensional incompressible viscous flows. J. Comput. Phys., 103:336-349, 1992.

[13] Wei Shyy and Chia-Sheng Sun. Development of a pressure-correction/staggered-grid based

multigrid solver for incompressible recirculating flows. Computer Fluids, 22:51-76, 1993.

[141 Z. Zhu and C. A. J. Fletcher. A study of sequential solutions for the reduced/complete

Navier-Stokes equations with multigrid acceleration. Computer Fluids, 19:43-60, 1991.

[15] T. B. Gatski. Review of incompressible fluid flow computations using the vorticity-velocity

formulation. Appl. Numer. AI_th., 7:227-239, 1991.

[16] A. Era, V. Giovangigli, D. E. Keyes, and M. D. Smooke. Towards polyalgorithmic linear

system solvers for nonlinear elliptic problems. S/AM J. Sci. Comput., 15:to appear, 1994. Also

available as Yale University Department of Mechanical Engineering Research Report

ME-101-93, New Haven, CT, March, 1993.

[17] A. Era and M. D. Smooke. Vorticity-velocity formulation for three-dimensional steady

compressible flows. J. Comput. Phy._., 105:58-71, 1993.

[18] M. Napolitano and L. A. Catalano. A multigrid solver for the vorticity-velocity Navier-Stokes
1\um_l. M_thod.s Fhtids, 13:49-59, 1991.equations, fat. J. '_ e •

[19] Y. Xu. Nurncrical c_dcul_tions of art a.ris!lmmelric laminar diffu._ion .flam_ with detailed a,,d
reduced reactiort rnccha'_isms. PhD thesis, Yale University, December 1991. Mechanical

Engineering Department.

[lO]

[11]

[12]

[20] G. A. Sod. Numerical m¢thod._ itt .fl,tid dyl_amics. Cambridge Univ. Press,
London, 1985.

156

[21]

[22]

[23]

[24]

[25]

[26]

H. A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems. SLIM J. Sci. Slat. Comped., 13:631-644, 1992.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems. SLI:_I J. Sci. Star. Comput., 7:856-869, 1986.

C. C. Douglas. Implementing abstract multigrid or multilevel methods. Technical Report

YALEU/DCS/TR-952, Department of Computer Science, Yale University, New Haven, CT,
1993.

C. Liu, Z. Liu, and S. F. McCormick. Multigrid methods for numerical simulation of laminar

diffusion flames. AIAA, 93-0236:1-11, 1993.

M. D. Smooke, J. A. Miller, and R. J. Kee. On the use of adaptive grids in numerically

calculating adiabatic flame speeds. In N. Peters and J. Warnatz, editors, Nt,t_erical ,]I¢tl_od._ i_,

Lamiuar Flame P_vpagatio_, pages 65-70. Friedr. Vieweg & Sohn, Braunschweig, 1982.

M. D. Smooke and R. M. M. Mattheij. On the solution of nonlinear two-point boundary value

problems on successively refined grids. Applied N umcr. Math., 1:463--487, 1985.

157

N 94- 684
r

A MIXED METHOD POISSON SOLVER

FOR THREE-DIMENSIONAL SELF-GRAVITATING

ASTROPHYSICAL FLUID DYNAMICAL SYSTEMS

Comer Duncan

Department of Physics and Astronomy

Bowling Green State University

Bowling Green, OH 43403

and

Jim Jones

Computational Mathematics Group

Department of Mathematics

University of Colorado at Denver

Denver, CO 80217

SUMMARY

A key ingredient in the simulation of self-gravitating astrophysical fluid

dynamical systems is the gravitational potential and its gradient. This paper

focuses on the development of a mixed method multigrid solver of the Poisson

equation formulated so that both the potential and the Cartesian components

of its gradient are self-consistently and accurately generated. The method

achieves this goal by formulating the problem as a system of four equations

for the gravitational potential and the three Cartesian components of the

gradient and solves them using a distributed relaxation technique combined

with conventional full multigrid V-cyles. The method is described, some

tests are presented, and the accuracy of the method is assessed. We also

describe how the method has been incorporated into our three-dimensional

hydrodynamics code and give an example of an application to the collision of

two stars. We end with some remarks about the future developments of the

method and some of the applications in which it will be used in astrophysics.

1. Introduction

In recent years a number of astrophysicists [1]-[7] have developed simulation

tools which build in increasingly realistic physics. The present work grew

out of an ongoing effort by us to incorporate enough physics and to realize

that physics with robust algorithms so that we can simulate both existing
observed phenomena and make reliable predictions which the astronomers

can utilize in making better observations and interpreting those

observations. The ubiquitous existence of fluids and gravitation in the

PR_,G_4"_t'_G }_'_g BLA_'_iK N01" FI{MFD
159

universe demands that, if we are to have even the most rudimentary

simulation code, it must incorporate at least interacting fluids and

gravitational physics. In this work, we restrict our attention to the

weak-field, Newtonian limit of gravitation. The hydrodynamics code we

have created also builds in the effects due to the Special Theory of

Relativity, so the description of high speed phenomena is included. The

restriction to weak-field gravity implies that the gravitational field is

determined by the gravitational potential, which must be a solution to

Poisson's equation in three dimensions subject to Dirichlet boundary

conditions at the edges of the computational volume. In the coupled

hydrodynamic-gravitational system, not only the potential but also its

gradient is needed. The gradient contributes to the fluid's acceleration due

to its self-gravity, inducing the momentum components to change.

The traditional procedure is to determine the potential by solving the

Poisson equation with given Dirichlet boundary condition, then construct

approximations to the components of the gradient via finite differencing the

potential. However, in simulations of astrophysical gravitating fluids, the

development of quite complex flows must be anticipated. Examples from

astrophysics include supernova explosions, gravitational collapse,

propagation of high-speed jets from active galactic nuclei, star collisions

and disruptions in dense star dusters, and realistic models of the early

universe. For most of these simulations, we need to compute the gradients

of the gravitational potential as accurately as possible, which has motivated

our development of an alternate approach to the gradient computation.

Here we describe a method which can yield more robust gradients in

systems that exhibit large variability in space. This is done using a
distributed relaxation procedure coupled with full multigrid V-cycles and is

described in Section 2. In Section 3 we present some tests of the method on

three-dimensional systems. Section 4 presents our incorporation of it into

the three-dimensional relativistic hydrodynamics code. Finally, we briefly

describe an application of the code to the collision of two stars and

comment on the applications for which the code can be used.

2. The Mixed Method Algorithm

The problems we are interested in are three-dimensional, and the results

that we present in later sections are for such problems. However, in

presenting the method, we will consider its two-dimensional version to

160

makethe descriptioneasierto understandand visualize. All componentsof
the method, of both the discretization processand the multigrid algorithm,
havenatural three-dimensionalanalogs.
a. The Finite Volume Element Discretization Considerthe following
partial differential equation definedon somesquaredomain f_ in ?_2:

- V.V¢ =f in f_,¢ g on (1)

We let u and v denote the components of the gradient of-¢:

= -re

Then the partial differential equation may be written in the form of a

first-order system in f_

u + Cx = 0 (u equation)
v + Cy = 0 (v equation)

ux + v_ = f (p equation),

with boundary condition

(2)

¢ = g on 0_.

Here the labels u,v, and p for the equations are introduced simply for

convenience. To discretize this system, we follow the Finite Volume

Element principles developed in [8]. Consider a uniform square mesh flh

with mesh size h that covers ft. We introduce three sets of control volumes,

one for each of the three equations in Eq.2. These volumes are shown in

Fig. 1. We denote by/4 the set of all volumes U that will be used to

discretize the u equation in Eq.2. Similarly, we will use the notation 12 and

7) for the sets of volumes V and P for the v and p equations respectively.

For our finite element space we consider the lowest order Raviart-Thomas

elements on the triangulation given by the volumes P:

u h is linear in x and constant in y on each P E P,

v h is linear in y and constant in x on each P E _,

Ch is constant on each P E _.

The location of the nodes for each of the unknowns with their indexing is

also shown in Fig. 1. We can now disretize the equations. We take the u

161

equation in Eq.2 and integrate it over each U E/4. As an example, let Ui,j
be the volume in/4 that is centered at the interior u h node (i,j). We then

have

fu,,_ (u + Cx) dxdy = O,

which implies
h_ , h h h h h h-- ¢i,j+l-_(Ui_l, j "_- 6_i, j Jv Ui+I,j) -_ (¢/+l,j+l) = 0.

Integrating the v equation in Eq.2 over an interior V volume yields a

similar discrete expression involving nodal values of v h and ch. Integrating

the p equation in Eq.2 over the volume in :P centered at the interior ch

node (i,j); denote this volume by Pis; we get

which implies

fp,,_ (ux + v_) dxdy : fp,,_ f dxdy

-- Vi_l,j_l) : h2Z,j.+v,"lj "

Here, fi,3 is the value of f at the ¢ node (i,j), which results from assuming

that f is (approximated by) a piecewise constant function on P. The only

remaining part of the discretization involves integrating the u equation in

Eq.2 over the "half size" U volumes on the left and right boundaries, and

similarly integrating the v equation in Eq.2 over the "half size" V volumes

on the lower and upper boundaries. We illustrate this process by

integrating the u equation in Eq.2 over the volume U1,j that has the

boundary u h node (1,j) as the midpoint of its left edge. We have

which implies

or

ful._ (u + Cx) dxdy = 0,

r uh h - = 01,j + u2,) + h

h _ {2uh h
h

= hCa,j+ _.

Note that ¢lh,j+l is on the boundary and hence is known. To summarize, the

discretization has produced for each U volume a discrete version of the u

equation in Eq.2, for each V volume a discrete version of the v equation in

Eq.2, and for each P volume a discrete version of the p equation in Eq.2.

b. The Multigrid Algorithm We assume that the reader is familiar with

the fundamentals of multigrid methods; good references are [9],[S], [10]. We

162

considera family of uniform squaregrids f_hthat coverour region f2,where
h denotes the mesh size. Fig. 2 shows a coarse grid _22h, with twice the

mesh size of the grid f_h in Fig. 1. On each grid _2h, we can apply the

Finite Volume Element discretization process, and we write the discrete set

of equations that this process generates as

Lhz h = F h, (3)

where z h -- (u h, v h, ch)t and F h = (f u h, f v h, f h)_ and the unknowns, u h, v h,

and cg, are the nodal values of the corresponding functions on the grid f_ h.

Note that the values of ¢ at nodes on the boundary are known so they are

not included in ch; however, as mentioned in the last section, these

boundary values of ¢ do appear in the equations generated by integration

over the U and V volumes near boundaries, resulting in the possibly

nonzero terms fu h and fv h in Eq.3. In this section, we now define the basic

components of relaxation, interpolation, and restriction that are necessary

to implement a multigrid algorithm.

For the equations on a grid F_h, we use a distributive relaxation process

similar to that presented in [10]. We can think of relaxation as a three step
h

process. First, we sweep over all of the u h nodes, change the value of ui,j so

that the U equation at (i,j) is satisfied. Second, we perform a similar

Gauss-Seidel relaxation of all of the V equations. Note that these two steps,

the U and V relaxation, are independent of each other and could be

performed in parallel. Finally, we step over the ch nodes and change the

value of c h and the values of u u and v h that lie on the edge of the volume

P_,_, namely u_j_l, h h and v h We change these five7-Li-- 1,_4-- 1 ,Vi--l,j, i--l,j--l"

unknowns so that the P equation at (i,j) is satisfied and so that the

residuals of the U equations at (i,j - 1) and (i - 1,j - 1) and of the V

equations at (i - 1,j) and (i - 1,j - 1) are unchanged. To allow

vectorization, the Ganss-Seidel relaxation performed in each step is done in

a red/black ordering.

For defining interpolation operators, we use the same principles as outlined

in [8]. The Finte Volume Element discretization is based on finite element

spaces for the variables _h,vh, and ch, SO we can simply use the relationship

between the finite element spaces on the different grids to define

interpolation. To define the interpolation operator for ¢, which we denote

as I(¢)2hh, we note that ¢2h is constant on the grid 2h volume PI,J.

163

Referring to Figs. 1 and 2, we thus havethe following characterizationof
oh= i(¢)hhC2h:

,, ,, ,,--- _ = ¢I,J"¢i+1,j+1- ¢i,j+l¢i+l,j

To define the interpolation operator for u, which we denote as I(u)2hh, we

note that u 2h is linear in x and constant in y on the grid 2h volume Pt,J.

We thus have the following characterization of u h = I(u)hh u2h. (See Figs. 1

and 2)
h h _ u2h

Z_i-l,j-1 _- lZi-l,j I-1,J-1

h h _ u2h
_Z/+I,j-1 = Ui+l,j I,J-1

U 2hh h = 1/2(u2ih_l,Y_l + I,J-1,"?£i,j-1 = Ui,j

The definition of the interpolation operator for v is similar.

For defining restriction operators, we again use the same principles as

outlined in [8]. In the correction scheme multigrid algorithm, which we use

here, restriction operators are used to transfer right-hand sides and

residuals of equations, not the unknowns themselves. The definitions of the

restriction operators are based on the relationship between the volumes on

the various grids. The idea is to lump several of the grid h right-hand sides

to produce the grid 2h right hand sides. To define the restriction operator

for the P equation, which we denote as I(P) 2h, we note that a grid 2h

volume PI,J wholly contains four grid h P volumes. We thus have the

following characterization of f2h ___i(p)lhfh, referring again to Figs. 1 and

2:
h h h+/,÷l,j

To define the restriction operator for the U equation, which we denote as

I(U)2h h, we note that a grid 2h volume UI, j in the interior of f2 wholly

contains two grid h U volumes and half of four others. We thus have the

following characterization of fu 2h = I(U)2hhfu h, again referring to Figs. 1

and 2:

2h h h h h
__ fui+,d + fui+,,j_ 1 + 1/2(fuhi5 + hfUl,d-1 fui,j-1 + fui+2,j + fui+2,j_l).

The relationship between U volumes at boundaries is different; for example,

the grid 2h U volumes on the left boundary of f_ wholly contain two of the

grid h U volumes and half of two others, yielding Figs. 1 and 2:

2h h h
ful,j_ x = ful, j + fUhl,j_l + 1/2(fuh, j + fu2,/_l).

164

The definition of the restriction operator for the V equation is done in a

similar fashion.

3. Tests of the Mixed Method Algorithm

A standard approach to Eq.1 is to solve a discrete equation based on

cell-centered finite differences for approximating ¢, then to use simple

differencing of this approximation to get the components of its gradient.

We performed some numerical tests to investigate what advantage, in terms

of accuracy, the mixed method provides over this standard approach. These

tests were for problems with exact solution

¢(x, y,z) = sin(klx)sin(k2y)sin(k3z) with Ft--[0, 71"]3. By varying kl,k2,

and k3, we were able to see the effect that oscillations in the solution had

on the accuracy of the methods. Below are results for some of these tests

on a grid with 32 cells in each direction.

kl k2 k3
1 1 1

1 16 16

16 1 1

16 16 16

MIXED METHOD

CeT_

STANDARD METHOD

Cerr

7.90E-4 8.15E-4 1.58E-3 8.15E-4

1.47E-1 1.50E-1 4.59E-1 4.72E-1

1.46E-1 3.61E-0 4.56E-1 3.53E-0

1.47E-1 3.60E-0 4.60E-1 3.60E-0

Here, Cerr and (¢x)_r are pointwise 12 norms of the error in ¢ and its x

derivative scaled by the volume term h 3. These results are indicative of

results seen for other combinations of kl,k2, and k3. For smooth solutions,

the methods give nearly identical results. However, for oscillatory solutions,

the mixed method gives more accurate results, particularly for ¢.

4. Incorporation of the Mixed Method Solver into

the Three-Dimensional Hydrodynamics Code

a.The Physics and the Code The physics included in the present code

consists of a perfect fluid with an adiabatic equation of state formulated in

a generally covariant manner. The interval between events in spacetime is

represented in the present work in the form

ds 2 = -(cg 2 - _i/_i)d]_ 2 -_- "_ij(dx i -I- _'d_)(dx j -]- 13_dt). (4)

The function a is called the lapse and represents the lapse of proper time at

a given spatial point. The vector field/3 i is called the shift vector and

165

determines how much the spatial coordinates shift from one t = constant

slice to the next infinitesimally later one. The second rank symmetric

tensor field 70 is the metric tensor of the spatial geometry. In the general

theory of relativity[12], the four-dimensional geometry of spacetime is

dynamic and the lapse, shift, and three metric are related to the

kinematical description of the coordinates of the observer and the spatial

geometry. The fluid energy-momentum tensor must obey a local

conservation law in order to be consistent with Einstein's theory. When

supplemented with the conservation of Baryons, the conservation laws can

be written in the following form:

Rest-mass conservation

1 07} d)+

Internal energy equation

1 0 (7_dvi) = 0±
aT_ Oxi

(5)

1 O , 1 0 (7.}ev,)=_p (10(7}W)
aT½0t (7_e) + ±a72 Ox i _ +

Momentum equation

1 0 (7}Wvi))
aT½0xi

(6)

1 0 7} S 1 0 _ i OP P In a
a720-_(! 3)+a7 _10xj(72Sjv)- OxJ +(d+e+ W)W-_x j

& Off i 1 Sk& 07 m
(7)

a OxJ 2W (d + e + PW) OxJ

The variables d, e, and Si, which are used in the code, are defined as

follows: d = pW, e - peW, and Si = (p + pe + P)ui. Here d, e, and Si are

respectively the coordinate mass density, internal energy density, and

covariant components of the relativistic momentum density. Eq.(5-7) are

the equations of general relativistic fluid dynamics in a general background

spacetime. Since the present paper is restricted to the study of phenomena

with weak gravitational fields, we introduce the following Newtonian

approximations to the lapse, shift, and three-metric in Cartesian

coordinates:

a _ 1 +¢ (8)

166

/3_ -_ 0 (9)

"Tij "" 6ij. (10)

The scalar field ¢ is the Newtonian gravitational potential and must satisfy

the Poisson equation

V2¢ = 4uGp, (11)

in the computational volume and Dirichlet boundary conditions on the

volume edges.

With the Newtonian approximation to the geometric variables it then

follows that the self-gravity of the fluid contributes to the change in the

momentum density through the term pVc_. The value of c_ itself enters

several places in the fluid equations. Thus, a complete characterization of

the self-gravitating fluid dynamics requires both the lapse and its gradient

vector. It is these quantities that our mixed method computes in a robust

manner. Concerning the elements that constitute the hydrodynamics part

of the code, the methods used may be characterized as explicit finite

volume schemes. The physical variables d, e, and Si are the fundamental

quantities. These variables are discretized on a staggered grid system with

the conventions that scalar variables such as density are stored at zone

centers, while vector variables are centered on the faces of the zones. The

biggest challenge is by far to treat the advection of the physical variables as

accurately as possible. This is especially true for the astrophysical

applications, since complex flows abound. We want the code to be able to

detect and track shocks adequately. The advection method implemented in

the code is based on a monotonic advection algorithm due originally to Van

Leer [11]. It is robust and tracks shocks reasonably well. The code uses

artificial viscosity to smooth developing discontinuities over a few zones.

For this we use an artificial viscosity pressure, which is a combination of

linear and quadratic functions of the monotonized four-velocity differences.

The code uses an adiabatic equation of state of the form P = (F - 1)pc,

where F is the parameter that characterizes the equation of state and can

itself be a function of the thermodynamic variables and position. For the

model stars we discuss here, F is chosen to be a constant. The overall

structure of a single computational step of the code is described in [7] and

illustrated as follows:

167

[InitiaLDataJ

ITime_Step_Constraint

[Acceleration]

Artificial_Viscosity[

' " _IVel°cit:y[I ::i

[Density_andEnergy__ansport] -.i

[Momentum_Transport]

[Poisson_Solver]

At the end of the Computational step the fully updat_ physical variables

are available. The Poisson_Solver routine is invoked and it is here that we

utilize 0ur_iixe(imethod solver, which-rreturns ¢ and _¢.:

b.Application to Collision of Stars As a nontrivial application of the

code, we present a summary of the results of using the mixed method

Poisson solver in the simulation of the collision of two stars which are

initially in equilibrium. The initial data were chosen so that the mass

density an_ene_r_ density _rrespond to _wo equilibrium spheric_i_ars.

We have chosen the n = ! polytropic equation of state. This equation of

State =has the following _nctional forms for the initial mass density and

energy density: d ----do_ and e = eo (_)2, where _:_:Trr/ro a_d ro is

the equilibrium radius of the star. The two model stars were placed with

their centers displaced in the z --O ply. We show here_the r_u_of _: .
simuiationsin which the radii were chosen equal to 0.26R_o1_ and the

3central mass density do equal to 6.6g/cm::The-_ntral temperature of each i :

Star: was:___be 4.0e06 K.T]i_s]-m-uI-atib_wn_ere were all done

with a (66) a grid: All computations were performed on the Ohio

Su-percomputer center_s_y YMPS/864. The-hy-dr0d_amics part of the

code has been highly vectorized.

168

Fig. 3a showsthe contoursfor the initial potential and its gradient
componentsin the z = 0 plane for a run of an off-center collision. The stars

were chosen initially to have a relative velocity comparable to the orbital

velocity. Fig. 3b is a plot of the density contours and velocity field in the

z=0 plane. Subsequent motion is induced by the combined effects of the

initial momentum and the self-gravity of the two stars. Because the stars

attract each other, they develop accelerations toward each other and the

hydrodynamics that results alters the density and energy distributions.

Typical simulations were run for at least on the order of the gravitational

free-fall time. Given the combined interactions of the hydrodynamics with

self-gravity, we expect disruption of the two stars if the collision is

sufficiently violent. Figs. 4a,b show respective snapshots of the potential

contours and gradient and density contours and velocities for late times in

the off-center collision.

We conclude from these simulations and others that the mixed method

Poisson solver produces physically acceptable results when combined with

the three-dimensional hydrodynamics. This code is currently being used to

simulate higher resolution runs and other multiple-star systems. We will be

using the present code to treat the collision of two neutron stars and

compute its final state and the amount of gravitational radiation emitted

by such systems. Such computations are of importance because they can

shed light on the astrophysics of the mergers of neutron stars as well as

provide potentially important benchmarks of how much gravitational

radiation should be expected from such encounters.

Acknowledgements

The authors wish to thank Steve McCormick for many useful conversations

about the mixed method algorithm. We thank Jeyakumari Khan for her

assistance with the merging of the mixed method Poisson solver and the

hydro code. C. Duncan acknowledges support from Cray Research and the

Ohio Supercomputer Center, where the computations were performed.

References

[1] R. L. Bowers and J. R. Wilson, Numerical Modeling i_ Applied Physics

and Astrophysics, Jones & Bartlett, Boston, 1991.

169

[2] J. M. Stone and M. L. Norman, Astrophysical Journal Supplement

Series 80, 753 (1992).

[3] A. Abrahams, D. Bernstein, D. W. Hobill, E. Seidel, and L. Smart,

Physical Re'view D45:: 354/1 (1992).

[4]

[6]

[7]

P. Laguna, H. Kurki-Suonio, and R. A. Matzner, Physical Review

D44, 3077 (1991).

A. Abrahams and C. R. Evans, Physical Review D46, R4117 (1992).

T. Nakamura, Proceedings of the Sixth Marcel Grossmann Meeting on

General Rdativity, 1992.

G. Comer Duncan, Proceedings of the First Midwest Relativity

Conference, National Center for Supercomputing Applications, March,

1992; Bull. Am. Phys. Soc. (with G. Shastri), May 1992 OSAPS,
Cincinnati.

[8] S. F McCormick, Multilevel Adaptiw: Methods for Partial Differential

Equations, Vol. 6 in Frontiers in Applied Mathematics, Society for

Industrial and Applied Mathematics, Philadelphia, 1989.

[9] William L. Briggs, A Multigrid Tuto,'ial, Society for Industrial and

Applied Mathematics, Philadelphia, 1987.

[10] A. Brandt, Multigrid Te:chniqucs " 1984 Guide, The Weizmann

Instltute Of Science, Rehovot, Israel.

[11] B. Van Leer, J. Computational Physics 32, 101 (1979).

[12] C. Misner, K. Thorne, and J. Wheeler Gravitation, Freeman, San

Francisco, 1973.

170

1

/ • ,, -_ļ_,

t i

\

ii(i-I J-I _) [--_(t.

'1 I| _
v(I- l.J- I)

Figure 1

I
i I

\
\

•_J-,.J) I\

t
v(|- |,.I- I)

P vnhlme

Figure 2

171

CONTOURS:Iin VECTORS:tin CYCLE: 0.0 TIME: 0.0

(:3

O
.,¢

0
{N

C3
:::

0 2O 4O 6O

Figure 3a. Initial Gravitational Potential and Gradient

.-0.11_-01

.-G.i,2._-OII
-_.| 1711[-_G
..-0.1434_-¢G

-0.1114_:--I_G
..-0..1201 [-.06
.-0.246lR:-_,
-0.Z711 [--_

' -o,,1Mr/1[-o8

m
ItA_MUM

LIS144[-Cm
llml_M

0,15144[-10

O

0

0

O

CONTOURS:tin VECTORS:Iin CYCLE: 0.0 TIME: 0.0

I I I

L___ I I

0 2O 4O 50

Figure 3b. Initial Density and Velocity

172

CONTOURS:Iin VECTORS:Iin CYCLE: 180.0 TIME: 601.8

I ' I ' t

::

,,,,,.,

...... :::::

............_!! i!

iilii iii!i!ii!iiili!iil
0 2O 4O 60

Figure 4a. Gravitational Potential and Gradient

m

-G.1Q1K,_

..I',_.._
,,.,I_241MIE-,,_

IL_2K-IO

CONTOURS:Iin VECTORS:fin CYCLE: 180.0 TIME: 601.8

i I I

!!i:i!!!iiiiiiiiiiiiiiiii!!!!ii!!iiiiii!iiiiiiiiii!iii!iiii!ii!i

o ii!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiii!iiiiiiii!iiiii
...................... ,,,,,,,
......................... ,,,,,,,
..................... ,...,,,,,,,
.................... ,,.....,.,

o

(D ''''_

................................... 111"''''"

:::

O I _ I J I _ t

0 20 40 60

Figure 4b. Density and Velocity

0.181 _H_+.O|
0-14101[+01

G.101_4-0|

IL81 l'_.I-_
0.411714-00

0,4_I _-.07

L

685
MULTIGRID METHODS FOR DIFFERENTIAL

EQUATIONS WITH HIGHLY OSCILLATORY

COEFFICIENTS,

Bjorn Engquist Erding Luo

Dept. of Math., UCLA, CA 90024

SUMMARY

New coarse grid multigrid operators for problems with highly oscillatory coeNcients are

developed. These types of operators are necessary when the characters of the differential

equations on coarser grids or longer wavelengths are different from that on the fine grid.

Elliptic problems for composite materials and different classes of hyperbolic problems are

practical examples.

The new coarse grid operators can be constructed directly based on the homogenized

differential operators or hierarchally computed from the finest grid. Convergence analysis

based on the homogenization theory is given for elliptic problems with periodic coefficients

and some hyperbolic problems. These are classes of equations for which there exists a

fairly complete theory for the interaction between shorter and longer wavelengths in the

problems. Numerical examples are presented.

INTRODUCTION

Multigrid methods are usually not so effective when applied to problems for which the

standard coarse grid operators have significantly different properties from those of the fine

grid operators [1,3,7-9,11-12]. In some of these problems the coarse grid operators should

be constructed based on other principles than just simple restriction from the finest grid.

Elliptic and parabolic equations with strongly variable coefficients and some hyperbolic

equations are such problems. One feature in these problems is that the smallest eigenvalues

*This work was partially supported by grants from NSF: DMS 91-03104, DARPA: ONR N00014-92-J-
1890, and ARO: ARM DAAL03-91-G0162.

PII_f:.IEI'_NGP_._E DL#.._ii(NOT r_!.M._D
PAISE INTENTIONALLYB_,NK

175

do not correspond to very smooth eigenfunctions. It is thus not easy to represent these

eigenfunctions of the coarser grids.

We shall investigate elliptic equations with highly oscillatory coefficients,

_j o_ja_(x)O_juc(x) =. f(x), a_(x) = aj(x, x)e
(1)

with aj(x,y) strictly positive, continuous and 1-periodic in y. This is one class of the

problems discussed above for which there exists a fairly complete analytic theory such that

a rigorous treatment is possible. This homogenization theory describes the dependence of

the large scale features in the solutions on the smaller scales in the coefficients [2,11]. We

shall consider model problems but there are also important practical applications of these

equations in the study of elasticity and heat conduction for composite materials.

In this paper we analyse the convergence of multigrid methods for equation (1) by

introducing new coarse grid operators, based on local or global homogenized forms of the

equation. We consider only two level multigrid methods. For full multigrid or with more

general coefficients the homogenized operator can be numerically calculated from the finer

grids based on local solution of the so called cell problem [2].
In a number of numerical tests we compare the convergence rate for different choices of

parameter and coarse grid operators applied to a two dimensional elliptic model problem.

The convergence rate is also analyzed theoretically for a one dimensional problem.

If, for example, the oscillatory coefficient is replaced by its average, the direct estimate

for multigrid convergence rate is not asymptotically better than just using the damped

Jacobi smoothing operator. The homogenized coefficient reduces the number of smoothing

operations from O(h -2) to O(h -l°/7 log h). When h/c belongs to the set of Diophantine

numbers [4], ergodic mixing improves the estimate to O(h -6/5 log h). The step size is h and

the wave length in the oscillating coefficient c.

These results carry over to some but not all hyperbolic problems. A numerical study

of using hyperbolic time stepping with multigrid inorder to compute a steady state gives

similar results to the elliptic case.

TWO DIMENSIONAL ELLIPTIC PROBLEMS

Elliptic problems on the form (1) will be considered,

-V.a_(x,y)Vu_=f(x,y), (x,y) Efl=[0,11× [0,11, (2)

subject to Dirichlet boundary condition u_]oa = 0. The function a_(x, y) = a(x/c, y/c) is

176

strictly positive and 1-periodic in x and y. From homogenization theory [2] follows,

max lu_-ul--,o, as _--,0.
(_,u)cn

where u satisfies the following effective equation,

02u 02u 02u

-AI,-g-_-(AI_+A_I)OuOx &_b--fi== f(x,U), (x,u)ea,

subject to the same boundary condition. Here,

Aij = / a(s,, %)(51j - --

and the periodic functions Kj are given by,

O_J)dsld%, i,j = 1,2,
Osl

Oa(sl,s2)

--Vs" a(sl' s2)Vst_J -- OSj ' j = 1,2.

(3)

For the numerical examples we shall choose a special case with diagonal oscillatory coeffi-

(4)

cient,

a_(x,y) = a(_-_--_).

From (3), we know that the corresponding homogenized equation is,

(_ + a) 0_u r _ 0_u (u + a) 0_
2 0_x +"-a'0x0y 2 0_u f(_,y), (5)

where # = m(1/a_) -' and _ = m(a_). Here, the mean value re(f) of a e-periodic function

is defined as,

/:1 f(x)dx.m

m(f) = e

For convenience, we introduce a brief notation of a N x N block tridiagonal matrix T,

T23

TNN-, TUN

T = Tridiag[Ti_x, Ti, Ti+I](NxN) =

177

Numerical Algorithm

The discretization of (2) combined with (4) is

- ahDx =+ ij - '3
(6)

h
wherea 8.=a_(xi-h-yj),b h.=a_(xi_yj+7), i,j=O,.." N. D+ andD_ are forward

sJ 2 _3

1 denotes the grid size. Using vectorand backward divided differences, respectively; h = N

notation, we can rewrite (6) as

where
1

L_,. = -_Tridiag[Bhl, A h, Bh](N-1)x(N-1) (7)

A h Tridiag[-@. lj' ah 'j "_ ahj 71- b h Jl- b h --ahjl(N-1)x(N-l)2 = _ - ij-l'

Bh is a diagonial matrix, denoted by B-h = Diag[--bhj](N_l)x(N-1) and
3 1

Ue,h ---_ (Ulhl, hit21 ''" .,ltN_ll,h ...,UhlN_I,lth2N_J,...,UN_IN_ lh)T

F_,h = (flhl ' fhl ' " " "' f/_-Il'h ... , flX_l,f_N_l,...h h ' fN-1N-1)h T

For simplicity, we only consider the two-grid method. Denote the full iteration operator of

this method by M. It is defined by,

M = S"¢(I - I_LHIlHL,,h)S'v, (8)

where the restriction and interpolation operators are given, as denoted below, by the weight-

ing restriction and bilinear interpolation operators, respectively,

1]121[1112 ih
I_=]_ 21 42 21 h' I_=_ 21 42 21 H"

The smoothing iteration operator S is based on the damped Jacobi iteration,

S = i - ._h_L_,h. (9)

The coarse grid operators LH is one of the following operators:

178

Global Homogenized operator: which is the discretized form of (5)

- a)DoDouij 0.5(# + -- fij.-0.5(/_ + a)D_D_uij + (# - ": y - gz)DY+D[u 0

Written in matrix form,

1

LH = -_ Tridiag[BjH,, A H, _jHI(_-I)x(_-I),
(10)

where

AH = Tridiag[# + a # + a N g, 2 + a), 2

BH = Tridiag[_- # # + a a - #
s 4 ' 2 ' 4](-_-l)×@-a)"

Local Homogenized operator: L H has the same form as (10), except the entries for A_ t, 13Hj

coming from the local discretized values of a_(x - y),

1

L H = --_Tridiag[13__1,A_, BH](N-1)X(-_--,),
(11)

where

with

A_' = Tridiag[-atit_lj, aiH_l j + a H + b" b" -a H N N ,3 ij--1 JI- ij' 13](_'--l)x(_ --1)

t3H = Tridiag[-cH,,-b H C/H](_N_I)×(.__I),3 ij ' 2

b h. -1- bhj_ 1 -_- 2_(bhj, b_}_l) a h. n1- ah_l --_ 2_(ahij,aLlj) cH = ,it -- gtbH _ ,3 a H _ ,s .
ij -- 4 ' ,3 - 4 ' 2

8(cl, c2) is defined to be
Cl +c2 "

Reduced Local Homogenized operator: L H has the same form as in (11), except here we ig-

nore the cross term D_D_. That means BHs is a diagonal matrix, BHs = Diag[-bH](u-1)×(-_-l) '

1

LH = -_ Tridiag[BH, ' A{'3 ' B3HI(N-1)x(N--1)
(12)

Sampling operator: Le, H has the exact form as Le,h, but values aij , bij are defined on the

coarse grids,

L H = L_, H (13)

179

Variational operator:

LH H h (14)= [h L_,hI_

Numerical Results

In practice, it is not always easy to calculate the spectral radius p(M). Therefore, we

study the mean rate [14] of convergence under different coarse grid operators Lhr. The

mean rate of convergence is defined by

IlL,,hUi _ _ _ ___ (15)
P = (llL ,hUl-- fhllh"

where i is the smallest integer satisfying IIL j - fhllh <-1 × 10-6.

InFigurel, a_(x-y) 2.1+2sin(27r(x-y)/e). We plot p defined by (15) as a function

of 7 by taking e = x/_h, and w in (9) is 0.095.

I

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

0q

-_+_+++++

" --.+++++++++_

0 5 10 15 20 25 0 5 I0 15 20

(1.1) N=16 (1.2) N=32

o._1_o.4 ' '- .':i z _-::

25

°2I
5 10 15 20 25 0 5 10 15 20 25

(1.3) N=64 (1.4) N=128

Figure 1: p as a function of'_. Dotted line is for (10), solid line for (11), dashed line for (13), and dashdot for

(12), + for (14). (1.1)-(1.4) are for different number of grid points N.

180

It is clear that the coarse grid operators derived from the homogenized forms (10)

and (11) are superior. The effect is more pronounced for large 7 when the eigenspace

corresponding to large eigenvalues of L_,h is essentially eliminated. For the practical low

' case, a study of the impact of the choices of I/ and I H is needed. In this paper we are

concentrating on the asymptotic behavior (large 3'). Different I/_ and I_ operators are

briefly discussed for the one-dimensional problem.

In Figure 2, we plot p as a function of the variable a, where LH(a) comes fi'om the

discretized operator -att D _:D :_ + a(# - x _ _a)DoDo _H DY r_Y v'_h.vii +__, w = 0.095 and e =ij + -
i

o,g

o|

o.i

o.d

o_

o.:1 u_ o,6 oil i i= 1_4

Figure 2: p as a function of a. Here N = 64 and "y = 12. "*" denote p under the different choice of Normal

and Local Homogenized coarse grid operator, respectively.

From Figure 2, we get further evidence of the importance of using the correct homoge-

nized operator. Techniques based on one-dimensional analysis does not contain the mixed

derivative term [1].
In order to isolate the influence of the coarse grid approximation we have kept the

smoothing operator fixed. It obviously also affects the performance. If we use Gauss Seidel

iteration method in (9), the convergence rate can be improved. In Table 1, we test the

same coefficient a_(z-y) = 2.1 + 2sin(2_r(x-y)/e). Taking N = 128, e = v/2h, we compare

the convergence rate by choosing damped Jacobi iteration and Gauss Seidel iteration.

7

Jacobi

G-S

5

.592_c

.454_

6 I 7 l 8 9 I 10 I 11 12
.55191-.5173 .48631.4570 .4340 .41401.3050]]

t-7 2-i]| .39221.37031.3491 I .3304]'31581"300811

Table 1: Spectral radius, two dimensional case

181

ONE DIMENSIONAL PROBLEMS

The one dimensionalequation is useful as a model for which a morecomplete mathe-
matical analysis is possible.

Considerthe following one-dimensionalelliptic boundary valueproblemwith a periodic
oscillatory coefficient,

da_(x)du_ =1, 0<x< 1 u_(0)-u_(1)-0, (16)
dx dx

where ae(x) - a(_) and satisfies the same assumption as above. As e _ 0, u_ converges

strongly in L_ to the solution u of the homogenized equation,

d2u

-O_dx _ 1, O<x< 1, o_=m(l/a_) -1 (17)

Subject to the boundary conditions ¢(0) = ¢(1) - 0.

Numerical Algorithm

Let the difference approximation of (16) be of the form:

a _ x 1 u_. u))+a_(x3 _)(u)-u_-- (3+_)(3+1 -- j_l) = 1,

In matrix form, (18) can be written as

j-- 1,--.,N-1 (18)

L_,hU h = 1, u h _--- (Uhl "'" , lZ_r_I)T

where - '.... :
1

L_,h = -_Tridiag[-ai_l, ai__ + ai, ai+l](g_Dx(N_l) (19)

with aj = a_(xj - h_)2 "

We first consider a two-grid method by applying standard restriction, standard inter-

polation operators and Jacobi smoothing iteration.

The coarse grid operator LH will be one of the following:

Homogenized operator:

Averaged operator."

m(1/ae)-1
LH - H2 Tridiag[-1,2,--1](N_I)x(_I) (20)

LH-- H2 Tridiag[-1,2,-1](__a)x(___a) (21)

182

Sampling operator: L_, H has the exact form as L_,h, but only every second aj value is used,

Variational operator:

LH = L¢,H (22)

L. = IHL_,hI h. (23)

Convergence Theory

The theorem below on the convergence rate is too pessimistic in the number of smooth-

ing iterations necessary. However, the analysis still gives insight into the convergence

process and the role of homogenization. With LH replaced by averaging (21) the same

analysis results in "7 = O(h-2) which means that multigird does not improve the rate of

convergence over just using Jacobi iterations. This follows from the effect of the oscillations

on the lower eigenmodes. It should also be noticed that in the case (ii), the solution of L_,h

is much closer to those of LH, see [11].

Theorem 1 Let M be defined as in (8), with LH defined by (i1).

C such that,

p(M) < po < 1,

when either one of the following conditions is satisfied:

There exists a constant

(i) 7 >- Ch-l-3/Tlnh

(ii) the ratio of h to e belongs to the set of Diaphantine number, and "7 >_ Ch-a-'/Slnh.

For details of the proof, see [10]. An outline is as follows. Separate the complete eigenspace

of L_,h into two orthogonal subspaces, the space of low eigenmodes and that of high eigen-

modes. After several Jacobi smoothing iterations in the fine grid level, the high eigenmodes

of the error are reduced, and only the low eigenmodes are left. Combining eigenvalue analy-

sis with homogenization theory [11], one may realize that the low eigenmodes of the original

discrete operator are close to those of the corresponding homogenized operator. We then

approximate them by the corresponding homogenized eigenmodes and correct these in the

coarse grid level.

183

7

Numerical Results

In Figure 3.1 and Figure 3.2, a_(x) = 2.1 + 2sin(27rx/e). We plot the analogous graph

to Figure 1. Here e = x/_h and _ in (9) is 0.:i829._-In_]gure=3_3 and:_igure 3.4:,'a_(X):=

2.1 + 2sin 27rx/e + _r/4). Here e = 4h and w -_ 0.1585,_

O.8

O.4

0.2

It .-a-

1.2

o.18

Oo_

O_,a-

0°2

00
0o 10 2O

(3.1) N=15

. =: -,

1.4 - '*

,2•
o.s _.. __.......................

O..4

\\

- _ _;_\

• -.. ,

10 2o

(3.2) N_I 2_

:. : - .

Z.2

o._
k,.

o.2 Oo2

°o _/'o 2o Oo • o

(3.3) N--X6 (3.4) N_l _-8

Figure 3: p as a function of"/. Dotted line is for (20), solid line for (21), dashed line for (22), and dashdot for

(2a). (a.x)-(3.4) _e for dlf_erent n_m_e_grid point_ N.

In Figure 4, with the assumptions in Figure 3.3-3.4, we plot a_(x) and the approximation

of (18) under the choices of coefficients in Figure 3. :_

.4._5

3._5

2S

2.-'5

2

It

0.5

0 0 20 .40
......... i : - =i : _ : 7 i

...... o _
(4._t)]Nr_:32 (4.2) _I I tl

10 20 30

Figure 4: (4.1) and (4.2)are the graphs for ae(x), where * are the discretized values. (4.2) is the solution.

Dmshed line is for (17). Dashdot line is for -m(aC)uzs -- 1 and line with circles is for (18).

184

In Figure 5, we plot p as a function of the variable a, where L H = oA H. In (5.1),

a_(z) = 2.1 + 2sin(2rcx/e), co = 0.1829 and e = x/_h; In (5.2), a_(z) = 20.1 if z/e -Ix/el •

(0.7,0.9); otherwise, O.1, w = 0.0373 and e = 4h.

o.

o.m

o._

o._ o

Figure 5: p as a function of c_. The homogenized value ah = m(1/a_) -1 and the arithmetic value av = m(a '_)

are given. Here "y = 10 and N = 256.

In Figure 6, we present the convergence u, _ u, as e _ 0 by giving the numerical solutions

of (16) and (17). Recall that our goal is to solve the oscillatory problem and to use the

homogenized operator only for the coarse grids.

OoltS

O. 16

O

O. la

o.i,_

o.i-4

o. 12

o.1

0.08

o.c_s

o. c),4

0.02

o o

Figure 6: Solid lines are the approximations for (18), dashed lines are the solutions for (17), respectively,

when e = 0.2 in (6.1) and e = 0.1 in (6.2). Here N = 500.

185

HYPERBOLIC PROBLEMS

Time evolution of a hyperbolic differential equation can beusedfor steady state computa-
tions. This is commonin computational fluid dynamics, [6]. In multigrid this meansthat
hyperbolic timestepping replacesthe smoothing step. There are fundamental differences
with standard multigrid for elliptic problemsbut someof our earlierdiscussionscarry over
to the hyperbolic case.The dissipativemechanismsfor hyperbolic problemsaremainly the
boundary conditions. Considerusing the modelproblem,

02u¢ 0 a_(x) OU¢
Ot 2 Oxx -_x = f(x)' 0<x< 1 (24)

as the smoothing equation in multigrid for the numerical solution of (16), subject to the

boundary conditions
Ou_(1)

_(0) =0, Ox _o. (25)

The eqnation (24) must have boundary conditions which are dissipative but reduce to (25)

at steady state, see [5],

0u¢(1,t) X/-_0u_(1, t)
u((O,t) =0, Ot + v - ,-, Ox -0. (26)

The initial condition should support the transport of the residual to the dissipative

boundary x --- 1,

(x,[) = u0(x) giw,

¢,_(x,_+ at) = _,o(_)_ At_D_,O(x).

Note that the initial condition approximates the transport equation u t + v_ux = 0. The

difference approximation of (24) needs a low level of numerical dissipation.

The homogenization theory of [2] is also valid for equation of the type (24). A numerical

indication is seen in Figure 7.

The positive effect of multigrid on the convergence rate does not carry ever to problems

for which the steady state is hyperbolic or contains hyperbolic components. If,

Ou¢ Ou_ Ou_

+ _-$2 + _ = o0---[oy

is used for the equation,

u C is

_--_x +fl-0-_-y =0, x,ye[0,1],

1 -periodic in y, u¢(O,y,t)= a¢(y).

186

The coarse grid operator must resolve all scales of a _ to required accuracy in order to

produce multigrid speed up. More on this phenomena will be reported elsewhere.

Numerical Results

In Figure 7, take 50 smoothing steps. Coefficient a(x/e) is the same as in Figure 1.

80

6O

4O

2O

0
O

3OOO

2OO0

I000

0
520 40 60 10 15 20

(7.1) (7.2)

:I 060

t 4o2 20

• " 0

0 20 40 60 0 20 40 60

(7.3) (7.4)

Figure 7: (7.1) Solutions: Solid line is the solution of steady state; Dashed line for homogenized solution;

Dashed dot line for average solution. (7.2) Residue as function of two level multigrid cycles. (7.3) Approximate

solutions after each two level cycle. (7.4) Approximate solutions for time evolution equation.

CONCLUSION

Elliptic equations and some hyperbolic equations with highly oscillatory coefficients

have been studied. We have shown that the homogenized form of the equations are very

useful in the design of coarse grid operators for multigrid.

187

The evidence is from a sequence of numerical examples with strongly variable coefficients

and to some extent from theoretical analysis. The result is clear in the asymptotic regime

of many smoothing iterations.

The impact on the coarse grid operator from the numerical truncation error and the

interpolation operator needs to be asessed in order to improve the performance in the

regime of very few smoothing iterations per cycle.

References :

[1] Alcouffe, R.E.; Brandt, A.; Dendy, J.E.; and Painter, J.W.: The Multi-Grid Method

for the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J: Sci.

Stat. Comput., vol. 2, no. 4, 1981, pp. 430-454.

[2] Bensonssan, A.; Lions, J.L.; and Papanicolaou, G.: Asymptotic Analysis for Periodic

Structure, North-Holland, Amsterdam, 1987.

[3]

[4]

Bran&, A: Multi-level Adaptive Solutions to Boundary-Value Problems. Mathematics

of Comput., vol. 31, no. 138, 1981, pp. 333-390.

Engquist, B.: Computation of Oscillatory Solutions for Partial Differential Equations.

Lecture Notes 1270. Springer Verlag, 1989, pp. 10-22.

[5] Engquist, B.; and Halpern, L.: Far Field Boundary Conditions For Computation Over

Long Time. Applied Numerical Mathematics, no. 4, 1988, pp. 21-45.
4-; -Z-_:

[6] Jameson, A.: Solution of the Euler Equations for Two-Dimensional Transonic Flow

by a Multigrid Method. Appl. Math. comput., no. 13, 1983, pp. 327-355.

[7] Hackbusch, W.; and Trottenburg, U., eds.: Multigrid Methods. Lecture notes in math-

ematics 960. Springer Verlag, 1981.

[8] Khalil, M.; and Wessseling, P.: Vertex-Centered:=and Cell-Centered Multigrid: for: in-

terface Problems. J. of Comput. Physics, vol. 98, no. l, 1992, pp. 1-10.

[9] Liu, C.; Liu, Z.; and McCormic, S.F.: An Efficient Multigrid Scheme for Elliptic Equa-

tions with Discontinuous Coefficients. Communications in Applied Numerical Methods,

vol. 8, no. 9, 1992, pp. 621-631.

188

=

[10] Luo, E.: Multigrid Method for Elliptic Equation with Oscillatory Coefficients. Ph.D.

Thesis, UCLA, 1993.

[11] Santosa, F.: and Vogelius, M.: First Order Corrections to the Homogenized Eigenval-

ues of a Periodic Composite Medium. To appear.

[12] Wesseling, P.: Two Remarks on Multigrid Methods. Robust Multi-Grid Methods, Hack-

busch, W., eds., Wiesbaden: Vieweg Publ., 1988, pp. 209-216.

[13] Wesseling, P.: Cell-Centered Multigrid for Interface Problems. J. Comput. Phys., vol.

79, no. 85, 1988, pp. 85-91.

[14] Varga, R.S.: Matrix Iterative Analysis, Prentice-Hall. Englewood Cliffs, NJ., 1962.

189

APPLICATION OF MULTIGRID METHODS TO THE SOLUTION OF LIQUID CRYSTAL

EQUATIONS ON A SIMD COMPUTER N 94: 2_/)_%

Paul A. Farrell% Arden Ruttan and Reinhardt R. Zeller

Department of Mathematics and Computer Science, Kent State University

Kent, OH

SUMMARY

=

We will describe a finite difference code for computing equilibrium configurations, of the

order-parameter tensor field for nematic liquid crystals, in rectangular regions, by minimization of

the Landau-de Gennes Free Energy functional. The implementation of the free energy functional

described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through

fourth order. Boundary conditions include the effects of strong surface anchoring. The target

architectures for our implementation are SIMD machines, with interconnection networks which can

be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative

efficiency of a number of iterative methods for the solution of the linear systems arising from this

discretization on such architectures.

INTRODUCTION: LIQUID CRYSTALS

Liquid crystal based technology plays a key role in many devices such digital watches and

calculators, active and passive matrix liquid crystal displays in laptop computers, switchable

windows using Polymer Dispersed Liquid Crystals (PDLCs), thermometers, temperature sensitive

films and materials such as Kev!ar which employ high-strength liquid crystal polymers. In addition

they are likely to play a key role in developments such as High Definition Television (HDTV) and

optical communications and computing.

Liquid crystals are so called because they exhibit some of the properties of both the liquid and

crystalline states. In fact they are substances which, over certain ranges of temperatures, can exist

in one or more me._ophase._ somewhere between the rigid lattices of crystalline solids, which exhibit

both orientational and positional order, and the isotropic liquid phase, which exhibits neither.

Liquid crystals resemble liquids in that their molecules are free to flow and thus can assume the

shape of a containment vessel. On the other hand they exhibit orientational and possibly some

positional order. This is due to the intermolecular forces which are stronger than those in liquids

This work was supported in part by the Advanced Liquid Crystalline Optical Materials (ALCOM) Science and

Technology Center at Kent State University under DMR89-20147.

aThis author was supported in part by The Research Council of Kent State University.

PRiKC,,EDtNG PAGE BLANK NOT FILMED __... JNiF..N,'iOr,i,4_.L_

191

and which causethe moleculesto have,on average,a preferreddirection. Liquid crystalsmay exist
in a number of mesophases,such as the _enTa, ti_.._rneeth_, ch.ole,_tcrie phases (see [3]).

In this paper we shall confine ourselves to nematic liquid crystals, which exhibit orientational but

no positional order. We wish to study the orientational order and the inter-molecular forces that are

present in a nematic liquid crystal material. To do this we need a quantitative measure of the

degree of order and of the total free-energy (sum of inter-molecular forces) in the system. A typical

liquid crystal molecule is long, rod-like and rigid. Its direction in space is given by the unit vector

n = (nl, n2, n3). The molecule points in the n or -n direction with equal probability; therefore,

there is no up or down direction. The director h = (nl, n2, n3) is also a unit vector showing the

preferred average direction of the molecules at a point in the sample. The degree of order of a liquid

crystal material at a particular point in the sample can be measured in terms of the statistical

average of the angles/9, which molecules make with the director. A more common measure that is

used is S :=< 3 cos 2 O - 1 >/2, where <> is a thermodynamic or temporal average. A value close

to 1 indicates a strong ordering of the molecules as is present in a crystalline solid. Values near zero

indicate random ordering, such as exist in an isotropic liquid. The order parameter S depends on

the temperature T.

Most early theoretical and computational results on liquid crystals employed the Oseen-Frank

theory. This assumes that the degree of order S is uniform throughout the material and seeks to

calculate the equilibrium configuration of the material by obtaining the director field which

minimizes the free erTergy fu_ef.ioTml

1 f.{g,(v. + g2(n. V x n) 2 + g._ln × V x hi2}.

In an infinite bulk the preferred configuration for the director field is one of uniform parallel

alignment. This will not normally be the case in practice, however, due to the effects of boundaries

and external fields. This theory, while instrumental in predicting many important phenomena in

liquid crystal physics, has some deficiencies. In particular, it is inadequate to model behavior close

to a defect, where the order may not be uniform and the director may not be well defined. For

example, in the presence of a radial field about a line defect this theory will exhibit a singularity at

the core. For this reason there is increased emphasis on the more computationally complex

Landau-de Gennes formulation.

THE LANDAU DE-GENNES FORMULATION

The Landau-de Gennes formulation describes nematic liquid crystals by a 3 x 3 symmetric, traceless

tensor order parameter Q. The local orientational information is given by the eigenvectors and

eigenvalues of Q at each point. Several behaviors can be distinguished by considering the relative

magnitudes of the eigenvalues. The material is said to be unia._'i,.l if Q has a unique largest

eigenvalue, with the two other eigenvalues equal to minus half the largest one. The corresponding

eigenvector gives the locally preferred direction. Thus this is the case which can be represented by

the Oseen-Frank theory and in fact in this case Q can be represented in the form

Q = _S(3fih T - I)

192

whereS is the value of the maximum eigenvalue and _ is the normalized eigenvector associated with

it. The Landau-de Gennes formulation, however, is capable of representing more complex behaviors,

such as the bia:r.ial case, where all three eigenvalues are distinct and the i._otropic case, where all

three eigenvalues are equal and hence, because Q is traceless, all three are 0.

To obtain the equilibrium tensor field again seek a tensor field Q that minimizes the free energy of

the system. In this case, the free energy can be expressed as

F(Q) = Fvo_(Q) + F_f(Q) = f fvo_(Q)+ f f_f(Q),
Jll J0 12

where _ and Oft represent the interior and surface of the slab respectively. In this implementation

we limit ourselves to strong anchoring on the surface of _.

The term Fvol(Q) gives an approximation of the interior free energy and is given by the following

expression, (see, for instance [18]):

1 L
fvol(Q) := _ 1Q_z,_Q_,,_ 1L 1 +lA trace(Q:)

1 B trace(Q3) + 1C trace(Q2)2 + 5Dtrace(O2)trace(O 3) (1)

1 ,
+_lMtrace(Q2)3 +. _M trace(Q3) 2 - AXm_H_Q_H z

where L1, L2, and L3 are elastic constants, A, B, C, D, M, and M' are bulk constants, and H,

AXm_ , and E are the field terms and constants associated with the magnetic field respectively, and

the convention is used that summation over repeated indices is implied and that indices separated

by commas represent partial derivatives. The surface free density f_f has the form

1

A_(Q) := _Vtrace((Q - Q0)_) (2)

where Q0 is a tensor associated with the type of anchoring of the surface elements and V is

prescribed constant. In the strong anchoring case presented here Q cannot vary from Q0 and hence

fo_ £_(Q) = 0.

For P E gt, the tensor Q(P) will be represented in the form,

Q(p) 3= (Qa_)a,f_=i

= ql(P)¢l + q2(P)¢2 + q3(P)¢3 + q4(P)¢a + q_(P)¢s

-- ql(P) 0 _ + q2(P) 0

0 0 0 0 3

(ooo (oo+q3(P) _ 0 0 +q4(P) 0 0 0

0 0 0 _ 0 0

+qs(P)
0 0 O)
0 0
0 _ 0

2

similar to that in Gartland [12], where {qt(P)}_=l are real-valued functions on f_.

193

THE PHYSICAL PROBLEM

The discretization of the full slab problem in which a finite differenceapproximationof the
equilibrium configuration of liquid crystals in a slab

fl = {(x,y,z) • 0 < x < a, 0 _< y < b, 0 < z < c}

is given in [7]. In this paper we shall confine our consideration to the case of an infinite slab.

Assuming the slab is infinite in the z-direction and imposing boundary conditions, which do not

vary with z, effectively reduces the problem to a two dimensional problem on a rectangle:

_:= {(x,y):O<_x<_a, O<_y<b}.

The region is discretized in the standard manner by dividing the rectangle _ into I × J regions

v(i,j) = {(x,y): iAx ___x < (i + 1)Ax, jAy< y < (j + 1)Ay}

for 0 < i < I-- 1, and 0 < j <_ J- 1, where Ax = a/I, Ay = b/J.

The discrete interior free energy integral is now represented by

In f_l(Q) _ _ fvol(Q(xi, yj)) × voIume(v(i,j)), (3)

where the points P -= (x_, yj), for x_ = iAx and yj -----jAy, are located in the lower left-hand corner

of the rectangle v(i, j). The derivatives with respect to x and y in (1) are approximated using

central difference approximations.

With the assumption of strong anchoring, a second order accurate approximation of the Landau-de

Gennes free energy density given by

F(Q) _ _ fvol(Q(x_,yj)) x volume(v(i,j)) = _ h(x,,yj) (4)
i,j i,j

is obtained. With the discretization (4), the problem is reduced to one of minimizing _,j h(x_, Yi)

overall choices of {qt(xi, Yj)}_=I. This unconstrained discrete minimization problem can be attacked

in the standard way. That is, seek a solution of the non-linear system of equations

O _i'j'k h(X" YJ) -- O, (5)
g(_, i,)):= Oqi(xi,y3) --

for 0 <_ i < I, 0 <) <_ J, and l = 1... 5. A standard approach to solving non-linear systems such as

these is to use a modified Newton method (see [6]).

Each iteration of the modified Newton method involves solving a linear system, whose matrix is the

Jacobian of (5), and then using that solution to update the iterate and the Jacobian, after which

the process is repeated. The system in question is a large symmetric system, but for certain values

of the temperature it may become indefinite. In addition, it may be expected to exhibit multiple

solutions, which may be either stable or unstable. The ultimate aim of this research is to track the

194

minimal energy states as the temperature varies and to model the resulting bifurcations and phase
transitions.

THE WAVETRACER DTC ARCHITECTURE

The target architecture for this application is a massively parallel SIMD computer. A SIMD

computer uses multiple synchronized processing elements that operate in a lock-step fashion to

achieve parallelism. Each processing element (PE) performs the same operation at the same time on

its local data which is either stored in its own local memory or in a shared memory. A control unit

(CU) broadcasts instructions to the processing elements for execution. Each PE can be either active

or inactive during a particular operation. The control unit determines which PEs are to participate

by means of a masking function that either turns a PE on or off. Only the selected processors

execute the instruction, while the masked processors remain idle. The control unit normally buffers

data and instructions that will be broadcast to the processor array. A front-end computer provides

the programming environment along with the usual programming utilities such as a debugger and a

compiler. Program code is compiled and separated into scalar and parallel instructions. Scalar

operations are usually executed on the front-end, thus freeing the processor array to perform only

parallel computations. This architecture is considerably simpler to implement and program than

the alternative Multiple Instruction Multiple Data stream (MIMD) machines, in which each

processor can execute a different instruction. The SIMD architecture is normally used for massively

parallel machines, having between 4096 and 65536 processors, each with local memory, connected by

a special purpose high-capacity communication network. Early examples of this architecture

included the MASPAR MP-1 and MP-2 and the Thinking Machines Corporation Connection

Machine CM-1 and CM-2.

The platform chosen for this implementation was the Wavetracer Data Transport Computer (DTC),

situated in the Department of Mathematics and Computer Science at Kent State. This has a

number of unique features compared with previous SIMD computers. It was designed as a low cost

massively parallel processor, which can deliver "super-computing" levels of performance at

relatively low cost. Unlike previous SIMD machines, which had dedicated front-end processors for

storing scalar data and performing uni-variable (scalar) computations, the DTC uses a standard

workstation for this purpose as well as for compilation and storage of the program. Among

front-ends supported were the Sun 3, Sparc and Hewlett-Packard/Apollo workstations.

The DTC is connected to the front-end by means of the industry standard Small Computer System

Interface (SCSI), which is normally used to connect hard disks. The maximum bandwidth of this

interface is 5 Mbytes per second. The front-end sends instructions and data to a control unit, which

decodes these instructions and broadcasts both instructions and data to the processor array. The

array processors are semi-custom 1.5 micron standard cell chips. Each chip contains 32 one-bit

processors together with 2 kilobits of fast RAM for each processor, and associated control and

memory error-detection circuitry. In addition, each processor has access to between 8 and 32

kilobytes of private external dynamic memory depending on the configuration. Each circuit board

consists of 128 chips. The minimal configuration, the DTC-4, has one circuit board and thus 4096

processors. Other configurations are the DTC-8, with 2 circuit boards and 8192 processors, and the

DTC-16, with 4 circuit boards and 16384 processors.

195

The processors on each circuit board of the DTC-4 can be configured either as a 16 x 16 x 16 cube,

for three dimensional application, or a 64 x 64 square, for two dimensional applications. The

DTC-8, can be configured as 16 x 32 x 16 cube or a 64 x 128 square, and the DTC-16 as a

32 x 32 x 16 cube or a 128 x 128 square. The assumption here is that most applications correspond

to physical problems in 2 or 3 dimensions, and thus a 2 and 3 dimensional interconnection network

is the most efficient for their solution. This is in contrast to the Connection Machine, in which the

processors are connected by a hypercube network.

There are a number of factors which affect the DTC's performance. Firstly, the speed of the

front-end is a determining factor in the overall performance of the DTC, since all uni-variable

expressions are processed on the front-end and, in addition, all instructions are passed from the

front-end to the control unit. In addition, although the DTC provides efficient data movement

along the grid, the results of propagating data to the left, for example, are undefined at the right

boundary nodes. In addition, for problems with periodic boundary conditions it is desirable that

the interconnection network have wro,pnroumt, in which one can propagate values from one

boundary to the other. This is not provided. This also poses a problem for periodic geometries such

as spherical or ellipsoidal. One other inconvenience is that there is no microsecond timer on the

DTC and all timings must be done on the front end.

The traditional mode of solution of problems on a SIMD machine involves assigning one processor

of the array per node in the problem space. To provide the ability to consider problems with more

nodes than are available in the array, the DTC provides the ability to partition the memory of each

processor to provide a larger number of .t,irt.,.,,I processor._. There must be the same number of

virtual processors for each physical processor. The number of virtual processors per physical

processor is called the virtual processor ratio. The controller automatically issues instructions to the

array once for each partition. Thus the execution time may be expected to increase linearly with

the virtual processor ratio.

The Wavetracer used in the results presented here was a Wavetracer DTC-4 with a Sun 3/50 front

end. Current codes are bring run on a Wavetracer DTC-16 with a Hewlett-Packard/Apollo 705

front end. For the minimization problem we are considering, each discretization point, P, of the slab

is associated with a virtual processor. Since the virtual processors are arranged in a rectangle or

cube, similar to the actual processors, this provides an entirely natural mapping of the domain onto

the rectangular grid of the DTC, provided an equal number of grid points are used in each direction.

At each point P of the slab the tensor order parameter Q is defined in terms of the 5 unknowns

{qe(P)}l=l,5. In our implementation, each set of 5 unknowns {qt(P)}_=1,5 is stored in a single virtual

processor. Associated with each unknown qe(P) there is also a corresponding row of the Jacobian

matrix. The nonzero'constants of that row are also stored in the memory of the processor

associated with P. Each non-zero constant, in a row of the Jacobian associated with P, also

corresponds to another virtual processor (which in turn corresponds to a discretization point) to

which the values of {q_(P)}_=l,5 at P must be communicated when the Jacobian matrix is updated.

The set of processors with which a given processor, P, must communicate in order to update its row

of the Jacobian is called the stencil of P. If the stencil of any processor is large, then the process of

updating the Jacobian at each step of Newton's method will be expensive. Fortunately, the finite

difference approximation described here yields a relatively small and compact stencil. In the

196

problem discussedbelow, the stencil will at worst consistof the nine points which correspondto
processorsat most two stepsawayfrom the given processor.

SOLUTION OF THE MINIMIZATION PROBLEM

Non-linear iterations

The minimization of the freeenergycanbe carried out by solution of the correspondingdiscrete
Euler-Lagrangeequationsgiven by (5). Thesegive rise to a coupledsystemof five non-linearelliptic
partial differential equations.

An alternative approachis to computethe Euler-Lagrangeequationsfrom fa f,,ol(Q). Discretizing
these produces a system similar to (5). In this case central differences are used for the unidirectional

partial derivatives. Two alternative choices of discretizations for the mixed derivatives, both having

the same accuracy, are considered. One produces a seven and the other a nine point stencil at each

nodal point in the domain. Since nearest-neighbor communications are efficient on the Wavetracer's

mesh array of processors, the communication costs are minimal. A reduced model in which

L2 = L3 = D = M = M r was also considered. This is significantly less complex and gives rise to a

five point scheme. Results for this case were considered in [7].

In all cases the resulting non-linear system of equations was solved using a (modified) inexact

Newton method. Let G : R n --_ R n be a function representing the discrete Euler-Lagrange

equations. There are a total of 5(I - 1)(J - 1) non-linear equations in this system. The function G
depends on the 5n unknowns

G(x)=c ql,q[,..., q2,...,g?,...

where n = (I - 1)(J - i) is the number of nodal points. Let G'(x) be the Jacobian of the system of

equations. Newton type methods require solving a large sparse linear system G'(Xk)Sk = --G(Xk)
and then updating the unknowns appropriately.

In theory, Newton's method requires the exact solution to the linear system for each Newton

iteration. Inexact Newton methods use some form of iterative procedure to solve the linear system

approximately. Several iterative techniques such as SOR and multigrid were tested on this problem

with varying success. Note that the matrix A := G'(xk) is singular at bifurcation and turning points

and can be indefinite near these points. This can cause convergence problems when solving the

inner linear system. It is well known that in the early stages of the Newton or outer iteration

process, the linear system need not be solved to full accuracy, since Xk is relatively far from the true

solution x*. Thus only a few inner iterations of the linear solver need to be performed. In later

stages, the inner system will need to be solved more accurately. This is precisely the philosophy of

the inexact (modified) Newton method. A common criterion used to determine how many inner

iterations are needed is as follows. In the k t_ iterationl compute a value nke[O, 1) which is an

acceptable bound on the relative residual. Common choices for this are nk := 21--_, nk := k-_, and

197

nk :-= min{lIG(Xk)II, _2}" For these problems the second of the above choices proved on average to

give the best results. The update Sk was then determined by:

IIG(xk)+ G'(x)s ll <
IIG(x)ll

(6)

Expression (6) may be interpreted intuitively as indicating that one should iterate until the inner

residual becomes "small" enough, then do an update.

Linear System Solvers

Several classical iterative schemes were used to solve the inner sparse linear system for ql,. • •, q5 at

each nodal point. Each method had certain advantages and disadvantages when used as a solver on

the Wavetracer. The following schemes were evaluated •

1. Multi-color SOR

2. Nested (multilevel) multi-color SOR
3. Preconditioned conjugate gradient

4. Multigrid (V-cycle)

5. Nested (multilevel) multigrid

All were implemented as both point-iterative and as block-iterative methods by blocking the

ql,. • •, q5 at each nodal point. In the point iterative methods one solves for each qi sequentially,

using the best available values for the q3, j _ i. The block method involves solving a 5 x 5 dense

linear system at each node.

A multi-coloring scheme was used for the SOR iterations [17] in order to introduce parallelism into

the method. One should recall that, with red-black ordering, the Gauss-Seidel method decomposes

into two Jacobi steps on the half size systems resulting from the coloring. Unlike the original

Gauss-Seidel method, the Jacobi method is highly parallelizable. The multi-colored SOR produces

similar benefits. In the case of the reduced model with the five point stencil only two colors were

needed. Results for this case are given in [7]. In the full model, three colors are required for the

seven point stencil and four colors for the nine point stencil. The parameter w for the SOR method

was chosen as the optimal parameter for the simple Laplacian model since the matrix in our linear

system has a similar structure to the Laplacian matrix. Numerical experimentation showed that

this was a good choice for our reduced model and gave good convergence results.

Preconditioned conjugate gradient [17] using several pre-conditioners was tried and the performance

of all were essentially similar. The results are presented here for symmetric multi-colored SSOR

[17], which is simple to implement and easily parallelizable.

Multigrid methods [2, 14, 16] were also implemented for these problems. The multigrid

implementation discussed here uses a single V-cycle in the inner iteration for each Newton outer
iteration. The Gauss-Seidel iteration is used as the relaxation method on the fine and intermediate

coarse grids. The Gauss-Seidel method was chosen over the SOR method for the fine and

198

intermediate grids because of its better smoothing property; that is, it eliminates the high frequency

components quicker in the early iterations than the SOR iteration. This is important because a few

iterations are performed on these grids per cycle of the multigrid algorithm. The relaxation

parameters ul and u2 were usually taken to be equal to 3. Multicolored SOR iteration was used to

solve the problem on the coarsest grid which was usually taken to be of size n = 4. The problem

was solved to the level of the truncation error with usually just a few iterations. The numerical

simulations were mostly done on the two-dimensional problem of size n = 64, meaning 65 grid

points in both the x and y directions. Some smaller and larger problems were also examined, but

with the minimal configuration of the Wavetracer, the DTC-4, available at the time, the n = 64 size

problem was the largest that could be simulated for the full liquid crystal problem using the
multigrid method.

The implementation of the multigrid algorithm on the Wavetrar.er assigns a processor (virtual or

physical) to each grid point on the finest mesh, including the boundary grid points. The model

simulations all assume Dirichlet (strong anchoring) boundary conditions, so the boundary

processors are used mainly to store the boundary data. The Wavetracer uses a multi-array data

structure to hold the values for each grid level. Because of the restriction in the MultiC language

that each multi-variable in the executing program must be of the same size, this implementation

was deemed to be the most efficient and easiest to implement. One problem with this

implementation is that many processors are idle when solving on the coarser grids. The multigrid is

thus not a fully parallelizable method using this implementation because not all processors are

being utilized. Alternative variations have been proposed to overcome this problem. Data transfers

between grids are fast since they are handled within processor memory and no communications

between processors is required. Communications are required when computing the weighted

averages for the restriction operation, but the actual transfer of data to the coarser grid is all done

within processor memory. Another drawback to this implementation of the multigrid method is

evident when one solves the n = 64 size problem in two-dimensions. The physical two-dimensional

processor grid on the Wavetracer contains 64 processors in each dimension for a total of 4096

processors. The n -- 64 multigrid problem requires 65 mesh points in each of the x and y directions.

This causes the Wave.tracer to operate in virtual mern.ory mode. Since each physical processor must

contain the same amount of virtual processors, many virtual processors will remain idle during the

iterations, resulting in a great loss in efficiency. In addition, since the available memory associated

with each physical processor is divided into two halves, one for each of the virtual processors, the

maximum problem size, which can be solved, is diminished. Naturally, the solution would be to

define a slightly smaller problem of n = 63 that would hot have this difficulty. The problem then

becomes one of how to define the series of coarser grids. In our original definition of the coarse grids

we let each grid size be a power of two. This greatly simplifies the construction of the grids and

provides the necessary symmetry to allow us to assign processors to the different grid levels in the

manner described. Data transfer between grids is also extremely simple, since it is all handled

within processor memory. Defining the coarse grids in any other way would greatly complicate the

programming process and would require many more computations and inter-processor
communications.

Another solution to this problem would be to use the boundary processors to not only store the

boundary data but also to take part in the iteration process. This means that now each boundary

processor would really represent two grid points in the mesh instead of only one. This would solve

199

the virtual processing problem because one would actually need only 63 physical processors in each

direction for the n = 64 problem. However, another problem presents itself because of the SIMD

nature of the Wavetracer. In a SIMD environment each processor must perform exactly the same

operation as all the other processors, except on a different set of data. The boundary processors as

defined above would have to be treated separately from the interior processors because in the

communications stage of the algorithm they are not performing the same operation. An interior

processor must communicate with its four nearest-neighbors in a five-point stencil scheme, whereas

a boundary processor would only have to communicate with a subset of its neighbors since the

boundary data that it needs to do its update is stored in its own memory. In the two-dimensional

mesh the processors on each of the four edges of the grid must be treated separately as must the

four corner processors. In a naive implementation these sets of processors would be handled

sequentially in the iteration process, greatly slowing down the computations. In fact, if the obvious

choice is made, this could increase the update time nine times, which is considerably more than the

increase incurred by virtual processing. Unfortunately this problem is not so easily avoided when

one considers general boundary conditions rather than Dirichlet conditions.

Another alternative approach is to use a Black Box multigrid method similar to that in Dendy [4, 5].

This eliminates the restriction that the number of unknowns in the finest grid should be 2 k + 1; for

some k. In addition, by storing the interpolation operators explicitly, it allows the incorporation of

the boundary conditions, for example, by using extrapolation at the points closest to the boundaries.

Thus the boundary conditions are incorporated algebraically rather than by using the difference

equations directly. This does involve extra storage and in the SIMD case loss of parallelism due to

grid point dependent code. However judicious coding, involving initialized multipliers, can reduce

the latter effect at the expense of some further storage. There is reason to believe that, for most

problems of this type and most geometries, the increased storage will be less than 100% and thus

that a code of this type will consume less storage overhead than one involving virtual processing.

The philosophy behind the nested or multilevel schemes [1, 13] is as follows. The problem is solved

on a coarse grid to a certain precision. The results are then interpolated to a finer grid and used as

initial starting values for the solution process there. A sequence of successively finer grids is used,

the finest is the one on which the result is required. It is hoped that providing good initial guesses

will reduce the amount of work needed to obtain the desired accuracy on the finer grids. This effect

is observed in the numerical simulations. The multilevel methods suffer the same kinds of problems

that the multigrid iterations suffered when implemented on the Wa, vetracer. The different levels are

implemented using a multi-variable array (in the MultiC language) with the physical (or virtual)

processors assigned to the grid points on the finest grid level. This means that when one iterates on

the coarsest level, many virtual processors will be idle. The interpolation of results between grids is

fast because it is all done within the processor and no inter-processor communications are necessary.

200

NUMERICAL RESULTS

Laplacian and Scalar Liquid Crystal Problem

Laplacian in Two Dimensions

The model Laplacian problem in two-dimensions is given by:

- uxx - uyy = fix, y), u = gix, y) on the boundary of _. (7)

Dirichlet boundary conditions are assumed and _ is taken to be the unit square. The performances

of the various iterative methods previously discussed are compared for problems of size n = 63 for

the one-level schemes and n = 64 for the methods using more than one level. For these simulations

we also assume a known true solution given by

u=x2y 2 iS)

which makes the right-hand side of equation (7)

/(x,y) = -2.0, (x + (9)

With this known solution one can compute the error as well as the residual after each iteration in

order to observe the convergence. The boundary values are set to the known true solution and an

initial guess of u -- 0.0 is used at all interior grid points to start the iterations. At each iteration the

maximum absolute error and residual iinfinity norms) calculated over all interior grid points are
monitored.

The Wavetracer DTC does not itself contain a micro-second timer. Consequently, all timings must

be performed on the Sun 3/50 front end. The columns real, user and syst give the real (wall clock)

time, the time spent in systems tasks related to the program, including input/output, and the time

spent in executing user code on the front end. The input/output time includes time spent accessing

the SCSI bus and thus time spent sending instructions from the front end processor to the sequencer

of the Wavetracer. User time includes time spent executing the sequential parts of the program. The

majority of the remaining real time is time elapsed while the DTC is executing parallel instructions.

The results of these simulations are given in Table 1. Given the initial guess u = 0.0, the maximum

initial error is 1.0 and the maximum initial residuals are approximately 7934 and 7684 for the

n -- 64 and n = 63 size problems, respectively. The iterations are continued until the maximum

absolute error is reduced by about a factor of 105. A red-black scheme is implemented for all the

iterations (except Jacobi) to induce parallelism into the methods. The red-black coloring scheme is

appropriate since the model Laplacian problem uses a 5-point stencil for processor communications.

The iterations are done on the Wavetracer using a 64 × 64 physical two-dimensional grid of

processors.

201

Table 1. Timings for the Model Laplacian Problem on the Wavetracer DTC

real

-Jacobi (n=64) 150.8

Jacobi (n=63) 132.6

-Gauss-Seidel (n=64) 89.1

Gauss-Seidel (n=63) 67.3

SOR (n=64) 3.2

SOR (n=63) 3.2

Pre-cg (n=64) 6.1

Pre-cg (n=63) 2.7

Multigrid (n=64) 2.5

user

9.9

13.5

7.5

8.2

0.4

0.4

0.5

0.5

0.3

syst

67.0

78.4

40.5

39.3

1.5

2.0

1.0

1.0

0.5

max. residual max. error iterations

1.5(-3) 3.5(-5) 6901

2.1(-3) 3.5(-5) 6689

1.5(-3) 3.5(-5) 3451

1.5(-3) 3.5(-5) 3345

6.2(-2) 3.4(-5) 113

5.8(-2) 3.5(-5) 111

7.2(-2) 2.5(-5) 32

6.8(-2) 3.1(-5) 31

3.4(-2) 3.5(-5) 3 V-cycles

As expected, the Jacobi iteration is the slowest to converge. Even though it is completely

parallelizable on the Wavetracer, its slow rate of convergence does not make it competitive. The

Gauss-Seidel method converges in about half as many iterations as the Jacobi method. This is

expected for the model Laplacian problem. Since the Gauss-Seidel iterations are implemented in a

red-black ordering, each iteration takes slightly longer than a Jacobi iteration. For both the Jacobi

and Gauss-Seidel iterations the real running times for the n = 63 size problem are faster than those

for the n = 64 problem. This is because the n = 64 problem uses virtual processors whereas the

n = 63 problem fits the physical grid of processors precisely.

The SOR method greatly improved the convergence of the problem. It needed only 113 iterations to

get to the same level of error as the previous two iterative methods (for the n = 64 problem). The

real times, user, and systems have also been significantly reduced. This agrees with the theoretical

results for the behaviour of these three iterative methods on the model problem.

The preconditioned conjugate gradient iteration was implemented using a red-black coloring scheme

and Symmetric SOR as the preconditioner. The method is competitive with the SOR iteration for

the n = 63 problem. It is, however, slower than SOR for the slightly larger problem.

To make a fair comparison, one must compare the multigrid algorithm with the n --- 64 size

problems of the other four iterative methods, since muitigrid was implemented using a finest grid of

this size. As one can see from the table, multigrid converges significantly faster than Jacobi,

Gauss-Seidel and preconditioned conjugate gradient, and slightly faster than SOR (in real time). It

even beats the other four methods when they are run on the smaller problem. This shows that

multigrid is a very competitive method even with its limitations as discussed previously. Only three

V-cycles are needed to reduce the error to the desired level. Five levels were used (n = 4 at the

coarsest level) with ul = v2 = 3.

Scalar Liquid Crystal Problem

The scalar analog to the full liquid crystal problem is of interest because it has a similar structure

to the full model. Various algorithms for solving the full model are first developed for the scalar

problem. The relative performances of these algorithms were basically the same for both models.

202

The free-energy density for the scalar-field analogue to the full systems model is given by:

f(q) = 1LIlVql2 + 1Aq2 -1Bq3 + 1Cq4 _ H2q (10)

where L1 is an elastic constant, A,B,C are bulk constants and H is a field term representing an

outside field such as a magnetic field. To minimize the free-energy of the system one needs to solve
the Euler-Lagrange equation

-L1V2q + Aq - Bq 2 + Cq 3 = H 2. (11)

Equation (11) is non-linear in the scalar variable q. The resulting linear system that needs to be

solved at each Newton step is very similar in structure to the Laplacian problem. The only

difference is the additional terms on the diagonal elements of the A matrix that is a result of the

non-linearity of the scalar problem. The discretization of the scalar Euler-Lagrange equation

produces a 5-point stencil at each mesh point. The communications pattern is thus the same as it

was for the Laplacian problem. A red-black coloring scheme is sufficient to induce parallelism into
the iterative solvers used.

For the problem used in these tests L1 -- 1.0, A = B = C -- 1.0, H = 0.0, with Dirichlet boundary
conditions given by :

q=l on x=landy--1, q=x ony=O,q=y onx=0.

The true solution to this problem is not known, therefore the error cannot be computed. The

maximum absolute residual at each iteration is used to monitor the convergence. The initial guess is

given by q=0.0 at each interior mesh point and iteration proceeds until the maximum absolute

residual is reduced by approximately factor of 106. The initial residuals for the n - 64 and n -- 63

size problems are 8192 and 7938, respectively. Table 2 gives the results of the simulations.

Table 2. Timings for the Scalar Liquid Crystal Problem on the Wavetracer

SOR (n=64)

SOR (n--63)

Pre-cg (n--64)

Pre-cg (n=63)

Multigrid (n=64)

Nested SOR (n=64)

Nested Multigrid (n=64)

DTC

max. residual max. error outer iter.

2.7(-3) -- 9

2.4(-3) -- 9

2.5(-3) -- 8

2.1(-3) -- 8

2.3(-3) -- 4

5.9(-3) -- 19(4,3,4,4,4)

5.9(-3) -- 8(4,1,1,1,1)

real user syst

6.2 0.3 1.4

3.3 0.3 1.4

12.0 0.8 1.2

5.2 0.8 0.9

4.O 0.5 0.6

6.8 0.5 1.7

4.0 0.4 O.7

Comparing the real execution times of these algorithms shows again that the preconditioned

conjugate gradient method is not competitive on this kind of architecture. The nested (multilevel)

methods use five levels with the coarsest level being of size n -- 4. The numbers in parentheses in
the last column of the table are the number of outer Newton iterations needed to achieve

convergence at each level.

203

We refer to a nonlinear Newton based analogue of the FullMultigrid (FMG) method as nested

(multilevel) multigrid. It employs Newton iteration on each mesh level until the desired accuracy is
attained. In the case of the example considered here, this required 4 outer iterations on the coarsest

mesh and one each of the finer mesh levels. With the exception of the coarsest level, a V-cycle with

ul = u2 = 3 is applied at each level to solve the linear system arising from the Newton process. It is

considerably faster than nested SOR in achieving the same reduction in the residual. Thus with the

exception of the initial 4 Newton cycles, it is a natural nonlinear analogue of the Full Multigrid

method (FMG) [16, p.22]. Multigrid (non-nested) seems to perform the best since its timings are

essentially the same as nested multigrid but it has greater residual reduction. The SOR (n = 63)

iteration has the fastest real time but on a smaller problem where no virtual processing is involved.

Note that the optimal uJ from the Laplacian model was used in the SOR iterations for the scalar

problem. The experimental results showed that this was a good choice and gave the best

convergence over any other choice. The stopping criteria used to terminate the inner iterations for

each Newton step was nk = 1/(k + 2).

Full Liquid Crystal Problem

Table 3 gives the results of the numerical simulations for the full systems model. The same test

problem was used as in the case of the reduced model together with the appropriate Dirichlet

boundary conditions. Only the size n -- 64 problem was considered for this set of runs. The

following set of parameter values was used: L1 = 10.0, L2 = L3 = 1.0, A = B = C = D ----
M = M' = 1.0 and outside field parameters are set to zero. Results from both the 7-point and

9-point discretizations are given. Both point and block iterative methods were compared. The initial

maximum absolute residuals for the 7-point and 9-point schemes are 8.2(4) and 8.95(4), respectively.

The iterations were continued until the maximum residual was reduced by approximately a factor of

106. The initial maximum error is 1.0 since initial guesses of qi = 0.0, i = 1, ..., 5 were used for the

interior mesh points. The simulations were all done in single precision.

The SOR methods used 10 inner iterations for each Newton outer iteration. The stopping criteria

used for the reduced model (n k = 1/(k + 2)) was too restrictive in some cases and caused

convergence problems. Using 10 inner iterations avoided these problem areas. As before, the

multigrid methods outperformed their SOR counterparts. The 7-point iterative scheme (point

method) was competitive with the 9-point scheme for both multigrid and nested (multilevel)

multigrid. This was not the case for the SOR methods. The 9-point scheme performed better for

the one-level SOR case but did worse for the multilevel iteration. Block methods were not

competitive for either multigrid or nested multigrid. The block method performed best for the

single-level SOR iterations, and was also competitive in the nested case. The best algorithm for

solving the test problem was again nested (multilevel) multigrid using the point iterative approach.

The 9-point scheme performed marginally better than the 7-point, producing a slightly smaller

residual, upon convergence, in about the same amount of real time. The pre-conditioned conjugate

gradient methods were not implemented for the full model since they showed to be not competitive

in the reduced model case [7].

204

Table 3. Timings for the Full Systems

real

SOR (7p) 277.0

SOR (9p) 148.7

Block-SOR (9p) 106.3

Multigrid (7p) 47.2

Multigrid (9p) 42.2

Block-Multigrid (9p) 60.9

Nested SOR (7p) 85.9

Nested SOR (gp) 100.5

Block-Nested SOR (9p) 105.0

Nested Multigrid (7p) 37.4

Nested Multigrid (9p) 36.3

Block-Nested Multigrid (9p) 50.5

Liquid Crystal Problem on the Wavetracer DTC

user syst

8.2 15.6

7.6 12.9

6.4 6.5

2.0 1.6

2.2 1.9

4.1 1.6

3.6 7.5

6.2 9.7

7.4 7.6

2.4 2.8

2.8 2.8

3.8 2.7

max. residual

8.17(-2)
9.10(-2)
7.95(-2)
6.55(-2)

3.40(-2)

2.99(-2)

8.26(-2)

6.14(-2)

8.23(-2)

8.44(-2)

4.62(-2)

4.62(-2)

max. error

1.7o(-5)
2.39(-5)
1.27(-5)
5.36(-5)
4.72(-5)
4.15(-5)
1.36(-5)
1.98(-5)
1.o5(-5)
6.88(-6)

3.86(-6)

3.89(-6)

outer iter.

42(10 inner/out)

34(10 inner/out)

17(10 inner/out)

4(1 V-cyc/out)
4(1 V-cyc/out)
4(1 V-cyc/out)
18(3,1,2,4,8)

25(3,1,2,5,14)

18(3,1,2,4,8)

8(4,1,1,1,1)
8(4,1,1,1,1)
8(4,1,1,1,1)

CONCLUDING REMARKS

Multigrid methods work well as inner solvers for liquid crystal problems when implemented on

SIMD computers with 2-D grid architectures. Multi-colored SOR methods are also effective, but

due to the cost of inner products on such machines pre-conditioned conjugate gradient methods are

not. The multigrid algorithms (one-level and multilevel) perform better than their SOR

counterparts for the larger n = 64 problem.

Although the Wavetracer's mesh architecture fits the problem (discretization) well thereby making

communications between nearest neighbors efficient, it is not as well suited for multigrid algorithms.

This is due to the fact that the machine has a physical 2-D grid structure with 64 processors in each

dimension. For multigrid and multilevel iterative schemes a grid size of 65 x 65 is required for an

efficient implementation, because of the way the grid refinements are defined. So for an n = 64 size

problem, the machine must to go into virtual processing mode, thus slowing down the execution

time of the algorithm and increasing the storage overhead. One solution would be to generate grids

that would not suffer this problem, but this involves considerably more complex coding, which

would also increase execution time and storage overhead but not to the same extent as virtual

processing. We emphasize that the multigrid implementation employed here is effectively the

sequential version of the multigrid method. Thus on the coarsest mesh only 0.4% of the processors

were active. Despite this disadvantage multigrid proved the fastest of the algorithms tested. We

remark that although these methods worked well for the test problems, where the iteration matrix

was positive definite symmetric, convergence problems can be expected, when the system becomes

indefinite, due to the coarseness of the coarsest mesh. Use of a coarsest mesh with more points can

be expected to remove this problem as well as improving the performance due to higher processor

utilization. Further improvements in performance can be anticipated if parallelism were introduced

using the method of [4, 5, 8, 9, 15].

205

REFERENCES

[8]

[9]

[1] R. E. Bank and D. J. Rose, Analysis of a Multilevel Iterative Method for Nonlinear Finite

Element Equations, Math. Comp., 39, no. 160, pp. 453-465, 1982.

[2] William L. Briggs, A Muttigrid Tutorial, Society for Industrial and Applied Mathematics,

Philadelphia, Pennsylvania, 1987.

[3] P. J. Collings, Liquid Crystals, Nature's Delicate Phase of Matter, Princeton Science Library,

Princeton university Press, New Jersey, 1990.

[4] J. E. Dendy, Jr., Blacl: Box Multigrid, J. Comp. Phys', 48, pp.366-386, 1982.

[5] J. E. Dendy, Jr., M. P. Ida and J. M. Ruttedge, A Seraicoarseni,g Maltigrid Algorithm for

SIMD Machines, SIAM J. Sci. Statist. Comput., 13, no. 6, pp. 1460-1469, 1992.

[6] J. E. Dennis Jr. and R. B. Schnabel, NumeT_cal Methods for Unco,straived Optimization and

Nonlinear Equations, Prentice Hall, Englewood, N J, 1983.

[7] Paul A. Farrell, Arden Ruttan, and Reinhardt R. Zeller, Fi_ite Difference Mi, imizatio_ of the

Landau-de Gennes Free Energy for Liquid Crystals in Rectangular Regions, Computational and

Applied Mathematics, I, C. Brezinski and U. Kulish eds., North-Holland, pp. 137-146, I992.

Paul O. Frederickson and Oliver A. McBryan' Parallel Superco_'verge_t MaItigrid, Lecture

Notes in Pure. and Appl. Math., 110, Dekker, New York, 1988.

Paul 0. Frederickson and Oliver A. McBryan, Normalized Converge,ce Rates for the PSMG

Method, SIAM J. Sci. Statist. Comput., 12, no. 1, pp. 221-229, 1991.

[i0_ :Eugene C' G_tland: An Introduction to Liquid cryStals, SIAM News(25, no: 6, 1992.

[ii] Eugene C. Gartland, On Some Mathematical and Numerical Aspects of the Landau-de Gennes

[12]

[13]
Systems Of Equatio_si::Lect: :Notes in Math., 953, pp:-20-45, Springer, Berlin, 1982.

[14] Wolfgang Hackbusch, Multi-Grid Methods aT_d Applicatio,s, Springer-Verlag, Berlin,

Heidelberg, New York, Tokyo, 1985.

[15] Oliver A. McBryan and Paul O. Frederickson, Multigrid Methods on Parallel Computers a

Survey of Recent Developments, Impact Comput. Sci. Engrg., 3, no. 1, pp. 1-75, 1991.

[16] Stephen F. McCormick, ed., Multigrid Methods, SIAM, Philadelphia, 1987.

[17] James M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum

Press, New York, 1989.

[18] E. B. Priestley, P. J. Wojyowicz, and P. Sheng, eds., I_troductiou to Liquid Crystals. Plenum

Press, New York, London, 1975.

[19] Reinhardt R. Zeller, Ph.D. thesis, Kent State University, in preparation.

Minimization Problem for Liquid Crystals, Inst. for Computational Mathematics Preprint,

Kent State University, Ohio.

E. C. Gartland, Jr., P. Palffy-Muhoray, and R. S. Vaxga, Numerical Minimization of the

Landau-de Gennes free energy: Defects in cylindrical capillaries, Mol. Cryst. Liq. Cryst., 199,

pp. 429-452, 1991.

W. Hackbusch, Multigrid Solution of Continuation Problems, in Iterative Solution of No_li'near

206

AN ADAPTIVE MULTIGRID MODEL FOR HURRICANE TRACK PREDICTION

Ngi: _8f7Scott R. Fulton

Department of Mathematics and Computer Science

Clarkson University

Potsdam, NY

SUMMARY

This paper describes a simple numerical model for hurricane track prediction which uses a

multigrid method to adapt the model resolution as the vortex moves. The model is based on

the modified barotropic vorticity equation, discretized in space by conservative finite differences

and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem

for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing

uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary

numerical results indicate that the local mesh refinement allows accurate prediction of the

hurricane track with substantially less computer time than required on a single uniform grid.

INTRODUCTION

Accurately predicting the track of a moving hurricane is a problem of great practical

importance. One approach is to treat the problem as one in computational fluid dynamics, taking

observed meteorological data as initial values for a numerical model. Many factors influence

the accuracy of this approach, including the initial data (or lack thereof), the dynamical and

physical processes included in the model, and the numerical scheme employed. While the relative

importance of these three factors is a subject of considerable debate, in this paper we focus on the
third.

Our premise is that predicting the track of a moving hurricane accurately requires resolving

the flow field adequately on both the large scale surrounding the vortex and the small scale within

the vortex itself. Since the spatial scales involved may differ by more than an order of magnitude,

models using uniform resolution are inherently less efficient than what should be possible. Here,

we use a simple dynamical model which has been used successfully by many authors (ref. 1, 2, 3),

namely, the modified barotropic vorticity equation. However, rather than use a single uniform

grid as in those studies, we investigate the use of adaptive multigrid techniques, with the goal

of obtaining high accuracy at low computational cost. In the following sections we detail the

formulation of the model, describe the mesh refinement scheme, and present some preliminary
numerical results.

*Work supported by the National Science Foundation under Grant No. ATM-9118966

207

MODEL FORMULATION

GoverningEquations

We formulate the model ona sectionof the sphereusing a Mercator projection (true at latitude
¢ = _bc). The model consists of the modified barotropic vorticity equation

0¢ 0¢
q-m2j(¢, 4) q- flm- x = vm2V2 ,

(I)

where the relative vorticity _ and streamfunction ¢ are related by

(m2V 2 - 0'2) ¢ = 4- (2)

Here V 2 = O:/Ox-' + O-'/Oy 2, J(¢, 4) is the Jacobian of (¢, 4) with respect to (x, y), fl = 2_2 cos ¢/a

(with a and fl the radius and rotation rate of the earth), and m = cos _b,_/cos ¢ is the map

factor. There are two quasi-physical parameters: the diffusion coefficient v, and the parameter 3'

(inverse of the effective Rossby radius) which helps prevent retrogression of ultralong Rossby waves

(ref. 4). We also consider versions on the f-plane (rn = 1 and fl = 0) and E-plane (rn = 1

and _ = 2f_ cos ¢,/a). The model domain is a rectangle in x and y centered at (x, y) = (0, 0),

where (,k, ¢) = (,k,, ¢,). At the boundaries we specify the streamfunction ¢ (and thus the normal

component of the velocity); where there is inflow, we also specify the vorticity 4-

Space Discretization

On a single uniform rectangular grid f_h consisting of gridpoints (x,, y j) with mesh spacing h in

x and y, we discretize (1) and (2) in space by finite differences as

dC,i,j __ "21, '"
dt + m'j, ,..,(¢, 4) + _,m.,O:, _Pi.j = vm_ V_..,(,..,

(3)

and

(m_V!..i - 7 e) ¢,,j = (,.j, (4)

respectively. Here :i,j(_P, () is the discrete Jacobian of Arakawa (ref. 5), and 0/h¢,.j and

V],.j¢i,j are the O(h e) centered difference approximations to O¢/Ox and the Laplacian operator,
respectively. We apply (3) and (4) at the interior points. At boundary points where there is inflow,

(is specified; otherwise, we predict (on the boundaries by applying an equation of the form (3)

but using appropriate one-sided differences. It should be noted that using the Arakawa Jacobian
is crucial here: the fact that it conserves discrete analogues of vorticity, enstrophy (mean square

vorticity), and kinetic energy implies that the model is not subject to nonlinear computational

instability.

208

To write the space-discretized equations in a more compact form, we collect the values ¢,._ and

(,, into grid functions _:'/' and (/, respectively, defined on the grid fY'. We can then write (3) and

(4) as

d(' _ F_,(¢j,,(,) (5)
dt

and

¢t'(¢h) = ¢h, (6)

where the operators F t' and G/' express the space discretization described above.

Time Discretization

To discretize (5) and (6) in time we use the classical fourth-order Runge-Kutta (RK4) scheme.

To describe it, we specify a time step At > 0 and introduce time levels tk = kAt for k = 0,

Suppressing the superscript h for simplicity, we now use the superscript k to denote values at time

level k, e.g., _p_ _ ¢1'(t_). With this not/_tion, the RK4 scheme can be written as

_t,+½ _ (t _ F t. := F(¢ t', Ct'),

½At

(_.+½ _(t _t+½ := F(@'+½,_t+_),
_At

_t-+, _(t_ Ft+ ½ := F(_t.+½,(t+½),
At

(+] _ (_ _ y_+_,
At

c(¢_+½)=(+½,

a(_t:-[-l): _t'-t- '

a(¢_+]) = (+_,

(7)

where

p_+l =61(F_ + 2_,_+_ + 2F_+½ + _t+J) . (8)

Thus, to execute a single time step tj. _ t_:+l, we perform the four stages indicated in (7); each of

these stages consists of computing F based on known values of ¢ and (, predicting a new vorticity

(, and solving the diagnostic equation for the Corresponding streamfunction _b.

Although it requires four times as much work (per time step) as the second-order Adams-

Bashforth scheme commonly used in such models, this RK4 scheme has several advantages. First,

it allows time steps at least four times as large, so in fact it is more efficient. Second, it is more

accurate, so time discretization errors are less likely to distort the conservation properties of the

Arakawa Jacobian. Finally, since it is a one-step scheme, it has no computational modes and needs

no other method for the initial time step.

209

Multigrid Solution

To solve the diagnostic equation at each stage for the streamfunction ¢, we use a multigrid

method. For the relaxation scheme we use a point Gauss-Seidel method formulated as follows. The

discrete (interior) equation (4) can be written as

1 _i.i
(L¢)i.j = _ (as¢i. j - S,.s) = :, = E.j, (9)

m-j

where

S,.s := ¢,-1,j + ¢i+l.i + ¢,,S-1 + ¢,4+1

is the sum of the neighboring values of ¢ and

(lO)

3,2 h;
------:7

aj :=4+ ms (11)

is the diagonal term of the discrete Helmholtz operator. Given an approximate solution ¢ of (9),

we relax at a point (i, j) by changing the value there to satisfy the corresponding equation (9); this

results in the new value

_bi,j = h"F"s + _''' , (12)
0"3

where Si,.j is defined using the current surrounding values in (10). The corresponding residual (if

needed) is given by
1 aj

r,., := E., h2 (a.,¢,,.i- S,.,) = _ @i.s- _P,.,). (13)

We use this relaxation (with red-black ordering) as a smoother in a multigrid method, using half-

injection for the fine-to-coarse transfer of residuals and bilinear interpolation for the coarse-to-fine

transfer of corrections. For the control algorithm we use repeated V(1,1)-cycles.

LOCAL MESH REFINEMENT

Given the premise that the flow near the center of the vortex requires much higher resolution

than the flow surrounding the vortex, we now consider how to provide such variable resolution.

Our basic method is essentially that of (ref. 6), constructing nonuniform resolution by

superimposing uniform grids of varying spatial extent. Since all calculations are carried out on the

uniform grids, programming remains relatively easy.

To illustrate the method, let us consider first the case of two grids: a coarse grid fU h covering

the whole domain f_, and a fine grid f_h which covers only a portion of the domain (i.e., enclosing

the vortex). We assume that the boundaries of the fine grid coincide with coarse gri_d line_s. The_

model variables _ and ¢ are carried on both the coarse and fine grids (denoted by ¢_,I,, Czl, and _h,_

Ch, respectively): Noting that the coarse grid allowS time steps t_ce _ iarge _ t_ose on the fine

grid, we use the following basic procedure for stepping the model from time ti to t_:+i :: : :

210

=

i

]. Execute one time step of length At on the coarse grid to produce (-'_":-t, ¢:/_./,-- 1;

2. Execute two time steps of len_h At�2 on the fine grid to produce (t t.-: j ch.L+J,

using boundary values for _p interpolated from the coarse grid (in space and time);

3. Copy the fine-grid solution to the coarse grid at points common to both.

Several points deserve mention here. First, in solving the implicit problem for tP on either grid,

we use the multigrid method outlined above. This introduces additional coarse grids, e.g., a grid

with mesh spacing 2h covering only the region of the local fine grid f_h. In fact, the "underlying"

part of the coarse grid f__,l, could be used for this; however, the resulting complications of

preserving interface values (for fine-grid boundary values) and restricting relaxation to only part
of __,t, seem too high a price to pay for the relatively small savings in storage which would be

achieved. Second, after completing the above three steps, the resulting solution on the composite

grid fib = _t, t.J ft -'t' could be further refined by applying a composite-grid discretization of the

governing equations; this FAC (Fast Adaptive Composite grid) method and several variants are

described in (ref. 7), and will be explored in future work. Finally, the above approach generalizes

immediately to more than two grids.

For the initial work reported here, we have made the following simplifying assumptions. First,

we require the grids to be rectangular and strictly nested (i.e., any fine grid is contained wholly

within the interior of the next coarser grid), with one grid per level (i.e., the refinement occurs in

one region only, surrounding the vortex). Second, we use a constant mesh ratio of two (i.e., the

mesh spacing h on any grid is twice that of the next finer grid, if any). Finally, we will specify

the number of grids and their sizes in advance but allow them to move following the vortex as the

solution is computed.

Since the problem to be solved has an easily identifiable region of interest surrounding the

vortex, we take the following simple approach to moving the grids. First, we locate the vortex

center on the finest grid. Then for each grid in turn, from the next-to-coarsest to the finest, we

decide whether or not to move the grid. This decision is based on the distance of the vortex

center from the center of the grid: if it is more than a specified fraction a of the distance L to the

boundary, we move the grid. The move is calculated so as to "overshoot" a bit, i.e., aiming to put

the vortex center beyond the (new) grid center by a specified fraction 6 of the distance to the grid

boundary. Note that care must be taken at this stage to ensure the strict nesting of grids assumed

above. Finally, the grid is moved by shifting the values which remain on the grid and filling in

the rest by interpolation from the next coarser grid. For the results presented here, we check for

possible grid moves after each time step on the coarsest grid, and use the parameters a = 0.4 and
8=0.2.

To locate the vortex center (needed both for moving the grids as described above and for

determining the vortex track), we first locate the point of maximum vorticity on the finest grid. We

then interpolate the vorticity at that point and its nearest neighbors in x and y (five points total)

by a quadratic function, and define the vortex center to be the location of the maximum of that

quadratic.

211

RESULTS

The initial conditions for the test problem consist of an axisymmetric vortex superimposed on

an environmental flow, as considered in (ref. 1). The environmental flow is given by

(14)

which corresponds to the zonal current

= dy- fi(,sin (15)

The tangential wind in the initial vortex is given by

V(r)=2V.,(-_,.) exp[-a(r/r"')b]
1 + (r/r,,,)-'

(16)

o _. "_211/)where r = [(x - x.)- + (y _0) j " is the radial distance from the vortex center (x,, y,). Note that

V has the approximate maximum value E,, near r = r,,, (exact when a = 0); the exponential factor

is included to make V vanish quickly for large r. The vorticity corresponding to (16) is

(;(r) -- -_r = r !+(r/r,,,): - ab _ .
(17)

We will use the following parameter values: fi(, = 10 ms-1 and L - 4000 km for the environmental

flow, andVm = 30ms -1,r," = 80km, a = 10 -r;.andb = 6 for the initial vortex. The

computational domain is a square of side length 4000 km on a/3-plane, using/3 for the latitude

20 ° N; the vortex is initially centered at x0 = 750 km and y, -- -750km. The model was run from

t = 0 to t = 72 hri for simplicity we have set u -- 0 and 7 = 0 here.

To establish a standard for comparison, we ran the model with high resolution (384 x 384 grid

with spacing h = 10.42 km and time step 10s). We then ran the model with a variety of grid

configurations (using up to four grids) and compared the vortex track to that of the reference run.

Table I summarizes these results, with the runs listed in order of increasing execution time (on a

SUN SPARCstation2). All of the cases in this table use only square grids, with N, = N.,j = N. The

forecast error is defined as the distance between the predicted vortex location at a given time and

that in the reference run. These results show that the local refinement process has the potential to

substantially reduce the execution time required to achieve a given accuracy. For example, a single

grid with h = 31.25 km (run 6) achieves errors on the order of 10-20 km; with local refinement

(run 2) comparable accuracy is obtained with only about 36% as much computer time. Similarly, a

single grid with h = 20.83 km (run 8) achieves errors on the order of 1-5 km; with local refinement

(run 7) comparable accuracy is obtained with only about 42% as much computer time. In fact,
run 7 with local refinement achieved about the same accuracy as did the single-grid run with h =

15.625 km (run 9) but with only about 18% of the computer time. In addition, the solution fields

produced with local refinement (run 7) are smooth, as shown in Figures 1-5, with no indication of

any problem due to the change of resolution at the grid interfaces.

212

CONCLUDING REMARKS

The preliminary results reported here show that adaptive nmltigrid techniques can substantially

reduce the computer time required to make accurate hurricane track forecasts. In addition to

ongoing testing of the existing model, we plan to investigate the following possible improvements.

First. we plan to include the FAC method as discussed above. This should have the advantage of

more precise conservation of vorticity, enstrophy, and kinetic energy at the grid interfaces. Second,

we plan to construct a fully adaptive version of the model by using the Full Approximation Scheme

(l;_S) to produce estimates of the local truncation error to be used in an automatic grid refinement

scheme (as proposed in ref. 8). Finally, we plan to test the model using real data, and compare its

performance to that of models currently in operational use.

REFERENCES

1. DeMaria, M.: Tropical cyclone track prediction with a barotropic model. Mort. Wea. Rev.,

vol. 113, 1985, pp. 1199-1210.

2. DeMaria, M.: Tropical cyclone track prediction with a barotropic spectral model. Mon. Wca.

tf_'v., vol. 115, 1987, pp. 2346-2357.

3. Smith, R. K., W. Ulrich, and G. Dietachmayer: A numerical study of tropical cyclone motion

using a barotropic model. Part I: The role of vortex asymmetries. Qz1art. J. Roy. Meteor. Soc.,

vol. 116, 1990, pp. 337-362.

4. Holton, J. R.: .DJ lntrodt_ctio, to Dv,amic .'ffet:eorologv, second edition. Academic Press, 1979.

5. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid

motion: Two-dimensional incompressible flow. Part I. d. ('o1111,. Phys., vol. 1, 1966, pp 119-143.

6. Berger, M., and J. Oliger: Adaptive mesh refinement for hyperbolic partial differential

equations..]. ('oral). Phys., vol. 53, 1984, pp. 484-512.

7. McCormick, S. F.: ,_lltltilevH ._da/,t iv,, M_'thod.'_ for Partial Difl'_'re'sJtial Equations. SIAM, 1989.

8. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Mat h. Comp., vol. 31,

1977, pp. 333-390.

213

Table I. Results of Model Runs

Grid size(s) At Forecast error (kin) at: Execution

Run N h (km) (min) 24 hr 48 hr 72 hr time (sec)

1 64 62.50 60 110 143 47 170

2 64 62.50 60 11 8 17 504

64 31.25 30

3 96 41.67 30 53 12 25 799

4 32 125.0 120 14 24 39 916

32 62.50 60

48 31.25 30

64 15.62 15

5 64 62.50 60 1 6 10 1,174

64 31.25 30

64 15.62 15

6 128 31.25 30 11 8 19 1,409

7 64 62.50 60 1 5 5 2,047

64 31.25 30

96 15.62 15

8 192 20.83 20 1 3 5 4,860

9 256 15.62 15 2 3 4 11,405

10 384 10.42 10 - - - 41,716

214

/97/ '7
RELAXATION SCHEMES FOR CHEBYSHEV SPECTRAL MULTIGRID METHODS*

94"Yimin Kang and Scott R. Fulton N - . 8

Department of Mathematics and Computer Science

Clarkson University

Potsdam, NY

SUMMARY

Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic

equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned

Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation

scheme provides an efficient and relatively simple approach for solving two-dimensional spectral

equations. Numerical examples and comparisons with other methods are given.

INTRODUCTION

For limited-area problems with general (non-periodic) boundary conditions, Chebyshev spectral

methods give exponential convergence for smooth solutions. However, except in some very simple

cases (e.g., one-dimensional constant-coefficient problems), Chebyshev approximations usually lead

to full linear systems which cannot be solved efficiently by direct methods, and iterative methods

must be used. Unfortunately, designing efficient iterative methods for discrete spectral equations

has proven difficult, especially for problems with non-constant coefficients (ref. 1). Perhaps the

most promising technique to date for solving spectral discretizations of elliptic problems is the

spectral multigrid method (ref. 2, 3). However, the best relaxation schemes known today are

complicated to apply. In this paper we introduce two simpler relaxation schemes and investigate
their performance.

As prototype problems we consider one- and two-dimensional elliptic equations with Dirichlet
boundary conditions on simple geometric domains. In one dimension we consider

-¢'(=) = f(=), I_1< 1,

u(+l) =a, u(-1) =b. (1)

The two-dimensional prototype problem is

-Au(x, y)= f(x, y),
(,y) : g(_,y),

I=1,lyl < 1,

I_1= 1,lyl= 1. (2)

We discretize these problems by Chebyshev collocation. For example, for the two-dimensional

problem (2), the solution u(x, y) is approximated by a set of discrete values fij,k on the Chebyshev

*Work supported by the National Science Foundation under Grant No. ATM-9118966.

215

grid {(_j,Yk) = (cos(jTr/N,),cos(k_r/Ny))]0 < j <_ N,,O < k < Ny}, with the requirement that

problem (2) be satisfied on this grid, i.e.,

-tuj,k l <j <Nx,O<k <Ny

j = O,j = N_,k = O,k = Ny

(3)

where fi_7) and fi_,_) are values of the second-order derivatives of the Chebyshev approximation

N_ Ny_m=O _n=O ¢z.._Tm(x)T,.,(y) to u(x, y) on the Chebyshev grid. For simplicity, we will assume here

that Nx = _IVy= N; however, the codes described in this paper do not require this.

The discrete problem (3) can be expressed in form of a linear system

AO= (4)

Unfortunately, the matrix A, formulated by Chebyshev collocation approximations, is full and

non-symmetric. For two-dimensional problems, direct methods (like Gaussian elimination) would

require O(N 6) operations for factorization and O(N 4) for the subsequent solution, which is far too

much work to be practical. Thus, iterative methods must be used.

THE POINTWISE PRECONDITIONED RICHARDSON RELAXATION SCHEME

The most efficient method available today for solving (4) and its generalizations to other

elliptic problems is the spectral multigrid method of Zang et al. (ref. 2, 3), which employs finite-

difference preconditioned Richardson iteration as the relaxation scheme in a multigrid context.

Preconditioned Richardson relaxation for (4) takes the form

V e-- V + wH(F - AV), (5)

where V is the current approximation to 0", w is a relaxation parameter, and H is the

preconditioner. The criteria for choosing a preconditioner H are:

• H should give fast multigrid convergence,

• H should be easy and cheap to generate or apply.

The finite-difference preconditioning of Zang et al. (ref. 2, 3) gives fast convergence, but applying it

requires solving (or nearly solving) a finite-difference discretization on the nonuniform Chebyshev

grid. This procedure is complicated and expensive. Are there alternatives which are simpler
and still effective? Achi Brandt (personal communication, 1983) has suggested that pointwise

preconditioning based on the (variable) Chebyshev mesh spacing might work well. In this section,

we investigate the performance of this simple preconditioner when applied to the problem (4).

216

The One-Dimensional Case

Formulation

As an analogue of the Gauss-Seidel relaxation for a finite-difference method, the pointwise

preconditioning for the Chebyshev discretization takes the form

h 2

v i +-- vj + w--_rj,

where hj -- (_j-1 - Y:j+I)/2 is the effective grid size at the point _J, rj is the the residual

R - F - AV at _j, and w is a relaxation parameter to be chosen to accelerate the convergence.

Note that (6) is equivalent to choosing the preconditioning matrix H in (5) as a diagonal matrix

(6)

H = diag (1'h2-2' ""'_h_r-12 ,1) . (7)

Analysis

The evolution of the error E = V - U in the Richardson relaxation (5) is described by

Ee---(I-wHA)E. (8)

Therefore, the convergence factor for (5) on a single grid is

asa = p(I - wHA),

where p denotes the spectral radius. Likewise, the multigrid smoothing factor for (5), when used as

a smoother in a multigrid method (e.g., ref. 4), is

p = p(G(I-wgA)), (9)

where G represents the perfect coarse-grid correction, i.e., set all low modes of the error to zero.

For the simple preconditioning (7), our numerical computations show that the eigenvalues of the

matrix HA are all positive real numbers. The maximum eigenvalue is Am_ _ 5.0, the middle is

)_mid _ 1.5, and the minimum is)_min _ O(N-2) . The formulas of Zang et. al. (ref. 2, 3) then give a

good approximation to the optimal w and p, namely,

2)_max- /_mid
w _ _ 0.325, p _ _ 0.6. (10)

)krnax +)kmid /_max "4")tmid

Indeed, computing the smoothing factor directly from (9) using w = 0.325, we find that p < 0.6 for

all N < 512.

To take into account the effects of grid transfers (omitted in the smoothing analysis above),

we use the following two-grid analysis. The evolution of the error E in one two-grid V(nl, n2)-

cycle (where nl and n2 specify the number of relaxation sweeps before and after the coarse-grid

217

correction, respectively)is describedby the matrix

T = (I-wHAf)n2(I - PA-_IRA)(I-wHAf) n'. (11)

Here, R represents the fine-to-coarse grid transfer (we use injection), P represents the coarse-to-

fine grid transfer (we use Chebyshev interpolation), and A I and Ac represent the discrete operator

matrix in (4) on the fine and coarse grids, respectively. Note that (11) assumes that the coarse-grid

problem is solved exactly.

We computed the two-grid convergence factor _rTG ---- p (T) for N _< 512 using different

values of w, and the numerical results show that _ = 0.325 again gives the optimal convergence

factor (or very close to it). Using that constant value, we find that the smoothing factor per sweep

#s ---- (O'TG) 1/(nl+n2) satisfies

0.5 < #s <_ 0.6

for all N < 512. A similar analysis for the one-dimensional Helmholtz problem

A u(x) - u"(x) = f(x) (12)

shows that with various choices of A and boundary conditions (Dirichlet, Neumann and mixed), an

appropriate pointwise preconditioner also yields the smoothing factor per sweep #8 _< 0.6.

We have developed FORTRAN-77 routines to implement the Chebyshev multigrid method

using the pointwise preconditioner as described above. The code has been used to solve the

problem (12) with various choices of u(x), _, and boundary conditions. The observed convergence

factor per sweep P8 is smaller than 0.60 for all cases tested, in agreement with the analysis

presented above.

The Two-Dimensional Case

Formulation

We note that Gauss-Seidel relaxation for the second-order centered finite difference

approximation to (2) can be written as

h 2

Uj,k t--- uj, k -4- --_rj,k,

where rj,k is the finite-difference residual. A natural analogue for the Chebyshev collocation

discretization (3) is

(1)+ 2/h + 2/h j,k, (13)

where h i and hk are the grid sizes at the point (_j, Yk), _j,k := fj,k -- [_(_._) + _l.yi_))] is the

residual of Chebyshev discretization, and w is a relaxation parameter to be _osen to' accelerate

the convergence. Clearly, the iteration (13) is a special case of the Richardson iteration (5), with

218

2 -1
a diagonal preconditioner H with diagonal entries (H)jk,jk = (2/h2 + 2/hk) • This preconditioner

is easy and fast to apply. Does it gives a fast convergence? Unfortunately, the following analysis

shows that the answer is no.

Analysis

Computational results indicate that the eigenvalues of the matrix HA are all positive real

numbers. Again, good approximations to the optimal w and _ can be obtained by

2),m_, - Aq._ (14)
_ Amax -F Aqua' P _ _max q- _qua'

where £m_¢ is the maximum eigenvalue and '_qua is the quarter eigenvalue (ref. 1). More precise

values of the optimal w and p, can be obtained by actually computing the spectral radius

p(G(I - wHA)) for different choices of w and comparing the results. For N _< 32, the eigenvalues

/_max and _qua, w and p computed by (14) and the optimal w and p are listed in Table I. Since p is

large and increases with N, these results suggest that the pointwise preconditioner (13) will not be

a good multigrid smoother.

Table I also lists the two-grid smoothing factors per sweep #8 = (P (T)) 1/('_1+n_) computed from

the matrices in (11) for N g 32 using w = 0.36. These results again show that the pointwise

preconditioning (13) does not give fast convergence.

We have implemented the pointwise preconditioning (13) in a multigrid solver written in

Fortran 77. Computational results from a number of test cases confirm the above analysis: we

conclude that the pointwise preconditioning does not give fast convergence.

Table I. Multigrid Analysis of Two-Dimensional Pointwise Preconditioning

Eigenvalues of HA By (14) By computation

N _m_:, /kqua 02 p 02opt P]28

4 3.00 1.83 0.41 0.24 0.35 0.28 0.51

8 4.10 1.26 0.37 0.53 0.35 0.52 0.68

16 4.57 0.95 0.36 0.66 0.36 0.75 0.80

32 4.76 0.78 0.36 0.72 0.36 0.82 0.88

219

THE LINE RELAXATION METHOD

The poor performance of pointwise preconditioning in two dimensions can be understood in

terms of the anisotropy introduced by the nonuniform Chebyshev collocation grid. Since the mesh

spacing varies with x and y, at any given point (x, y) the coupling in the discrete operator in (3)

may be stronger in x or in y. In finite-difference multigrid methods, point relaxation performs

poorly in such anisotropic cases, and the cure is to use alternating direction line relaxation. Thus,

it is reasonable to try an analogous approach for the Chebyshev discretization,

Formulation

To formulate the line relaxation method, we express the discrete problem (3) in the matrix form

(7t + V)U = F', (15)
: =

where 7/and l) correspond to the horizontal part (-02/Ox 2) and vertical part (-02/Oy 2) of the

Laplacian operator, respectively. Starting from an approximation V °ld to the solution U, one sweep

of (alternating direction) line relaxation based on (i5) consists of the following two parts; _

1. Sweep along the x-direction. On each grid line parallel to x-axis, use the values of V °ld except

those on the current line, and solve for values on the current line by solving (15). This can be

expressed in the matrix form as

(']-_ q-]dd)V mid = i_' _]20 V°ld, (16)

where Vd and])o denote the diagonal and off-diagonal parts of the matrix]2, respectively. Note

that theentr_es_-areknown (ref. 1) and Vd is a Constant on each grid line parallel to the x-

axis: Thus, the system (16) Can be decoupled into (N - 1) one-dimensional discrete problems,

each of which is a Chebyshev collocation approximation to a Helmholtz equation on an interior

grid line parallel to x-axis; the x-directional sweep consists of solving these equations.

, Sweep along the y-direction. The y-direction sweep is basically the same as the x-direction

sweep except that we now work on grid lines that are parallel to y-axis and use values of V mid
instead of V °ld. The equation we need to solve is

(7-la + V)V new = F' - 7¢oV mid, (17)

where 7/d and 7-lo are thediagonai and off-diagonal parts of 7/. As in the x-direction sweep, the

two-dimensional problem (17) is solved by solving (N- 1) one-dimensional tlelmholtz equations.

It turns out that as it stands, the line relaxation (16)-(17) is not a good multigrid smoother;
mid mid old newhowever, this can be fixed as follows. Let C " = V " - V and O = V new - V mid denote the

corrections for V °ld and V mid, and R °ld = _' - AV °la and R mid = P - AV mid denote the residuals

of V °ld and V mid, respectively. Rewriting equations (16) and (17) as correction equations and

220

introducing a relaxation parameter w (to be determined by analysis to accelerate the convergence),
we obtain

(q:/ -4- _)d)C mld ----wn TM, (']-/d nt- V) Chew ---- wRmld (18)

We refer to (18) as the collocation version of the line relaxation method.

It is not practical to implement the collocation version because there are no fast solvers available

for the collocation approximations, even for one-dimensional problems. However, in the multigrid

context, a relaxation scheme functions as a smoother rather than a solver: instead of solving

each problem exactly, we only need to smooth out the error, i.e., reduce high modes in the error.

Therefore, it is reasonable to replace the one-dimensional problems in (18) by approximate versions

which can be solved efficiently. We consider two alternatives as follows.

Ill the first, we replace the collocation discretizations of the one-dimensional Helmholtz

equations in (18) by tan discretizations. Tau approximations have the same exponential

convergence as collocation method, but can be solved directly in O(N log N) operations. This leads

to the tan version of the line relaxation method, and the total work of one z or y-direction sweep is

O(N 2 log N). As we will see below, this tau version turns out to be an efficient multigrid smoother.

In the second, we replace the collocation discretizations of the one-dimensional Hehnholtz

equations in (18) by finite-difference discretizations. This leads to the finite-difference version of

the line relaxation method, which has two obvious advantages over the tau version. First, it is

faster because it eliminates the transforms required in tan version, thus reducing the operation

count for solving each one-dimensional problem from O(Nlog N) to O(N). Second, it can be

extended to solve more generalized problems, e.g., problems with variable coefficients. As we will

see below, this finite-difference version also turns out to be an efficient multigrid smoother, even in
the case of variable coefficients.

Analysis

As in the case of the pointwise preconditioned Richardson relaxation, we can analyze the

performance of the line relaxation methods described above by computing the eigenvalues of the

corresponding interation matrices. Because the tau version cannot be expressed in matrix form

like (18), we will only do the analysis for the collocation and finite-difference versions. Note that

the tau and collocation versions are nearly the same, so the analysis for collocation version should

give a good prediction for the performance of the tau version. In this section, we will give details of

the analysis for finite-difference version and only list results for collocation version.

Smoothing Analysis

For the finite-difference version of the line relaxation iteration, the error evolution is described

by

E mid +---[I- w(7-[fd +]2d)-1(O¢-1_nt- I})]E TM, (19)

E new +---- [I--w(7-[. d + vfd)-I ('1-/+]))]E mid. (20)

221

where 7"lId and "_ld are the finite-difference analogues of the collocation discretization matrices 7-/

and V, respectively. Therefore, the error evolution matrix for one relaxation is

S = [I- w(Tid + YYd)-l(7-l + Y)][I- w(7-I Id + Yd)-](Tt + Y)].

The matrices Sn = (7-IId + Ya)-l(7t + V) and Sv = (_ld + vYd)-l(Tt +]2) have the same

eigenvalues (since x and y can be interchanged in the Laplacian operator), so we can focus on

just the x-direction sweep (19). The eigenvalues of Sn are all positive real numbers, so we can

use formulas (14) to obtain approximate values of w and p (squaring p to represent the effect of

both the x and y sweeps). These values are listed in Table II for N < 32, along with the optimal

relaxation parameter w and corresponding multigrid smoothing factor p = p(GS) computed

directly. These results suggest that for large values of truncation number N, O3opt _ 0.6 and

_< 0.5, independent of the grid size. Corresponding results for the collocation version are listed

in Table III.

(21)

Multigrid Analysis

For a multigrid V(nl, n2)-cycle, if we use zeros as initial guesses on all coarse grids (which is
a natural choice because the coarse-grid solution is a correction to the solution on the next finer

grid), then we can write out the error evolution matrix explicitly as

M= Sn_ [I - PG R(7"I + V)]S nl. (22)

This represents a procedure of nl pre-relaxations (S nl) followed by a coarse-grid-correction

(I - P G R (7-/+ V)) and then n2 post-relaxations (S n2). The matrix S is the error evolution
matrix of one relaxation on the finest grid defined in (21). The central part I - PGR(7-l + V)

represents the coarse-grid-correction, where R represents the fine-to-coarse grid transfer (we use

injection) and P represents the coarse-to-fine grid transfer (we use Chebyshev interpolation). The
matrix G is defined on the next coarser grid as follows: on the coarsest grid, G = (7-/+ _)-1 (which

means the coarsest grid problem is solved exactly); otherwise,

G = [I- M], (4 + V)-1, (23)

which represents a multigrid solution procedure on that grid. Note that (23) is actually a recursive

definition, since the matrix M in (23) includes another matrix G on the next coarser grid.

Tables II and III also list computed values of smoothing factor per sweep #s = (P(M)) 1/(_x+n2)

for the case w = 0.6, nl = 2, and n2 - 1. These results suggest that the smoothing factor of the

line relaxation method is less than 0.5, independent of the grid size. Note that while we could also

use Chebyshev restriction instead of injection for the fine-to-coarse grid transfer R, our numerical

experience shows very little difference between these two choices.

222

Table II. Analysis of the Finite-Difference Version

Eigenvalues of $7_ By (14) By computation

N Am= _qua tO p O)opt P #s

4 1.995 1.000 0.669 0.110 0.58 0.110 0.181

8 2.513 1.000 0.569 0.186 0.60 0.168 0.293

16 2.780 0.995 0.530 0.224 0.60 0.271 0.364

32 2.898 0.815 0.539 0.315 0.60 0.366 0.421

Table III. Analysis of the Collocation Version

Eigenvalues of Sn By (14) By computation

N Am_ /_qua 02 p ¢Mopt P #s

4 1.651 1.000 0.754 0.060 0.68 0.120 0.302

8 2.322 0.922 0.616 0.186 0.60 0.216 0.328

16 2.701 0.810 0.570 0.290 0.58 0.326 0.380

32 2.869 0.700 0.560 0.370 0.60 0.410 0.428

Computational Results

We have implemented the tau and finite-difference versions of the line relaxation scheme

described above in a Chebyshev collocation mu!tigrid solver for the two-dimensional Helmholtz

problem

_,u(x,y)- Au(x,y)= f(x,y), Ixl, lyl < 1,

u(x,y) = g(x,y), I_l-- 1, lyl-- 1,

with various choices of f, g, and)_. For both versions, the observed convergence factor per sweep is

less than 0.5 for all cases tested, in agreement with the analysis above. The finite-difference version

turns out to have slightly better convergence factors than the tau version, but the difference is

minor.

223

Comparisonswith Other Methods

In this sectionwecomparethe line relaxation spectralmultigrid method developedaboveto two
other methodsfor solving the two-dimensionalprototype problem(2). The first is a conventional
finite-differencemultigrid method; the secondis a matrix diagonalizationtechnique.Wedo not
comparewith the method of Zanget. al. (ref. 3) sincethe detailspresentedin that paperwerenot
enoughto allow programing the method. All computationsaredoneon a SUNSPARCstation2
using doubleprecision;the machineround-off error is about 2.22 x 10 -16.

Conventional Finite-Difference Multigrid Method

The finite-difference discretization is the usual second-order five-point scheme on a uniform

grid. The finite-difference multigrid method uses Gauss-Seidel (Red-Black) iteration as a relaxation

scheme, the fine-to-coarse grid transfer is half-injection, the coarse-to-fine grid transfer is bilinear

interpolation, and the multigrid V-cycle algorithm is used.

According to computations, the average execution time of one V(2, 1)-cycle of the finite-

difference multigrid method is approximately (0.56 x 10 -4) N 2 seconds, and (0.21 x 10 -3) N 2 log 2 N

seconds for line relaxation spectral multigrid method. Therefore, for the same grid sizes, one

V(2, 1)-cycle of the finite-difference multigrid method is approximately 3.75 log 2 N times faster

than the line relaxation spectral multigrid method.

However, because spectral methods have exponential convergence and fmite-difference

methods only have polynomial convergence, when high accuracy is required, finite-difference

multigrid methods must use much bigger grid sizes than spectral methods. The result is that

the line relaxation spectral multigrid method is faster than finite-difference when high accuracy

is required. As a specific example, consider the prototype problem (2) with true solution

u(x, y) = e 2x+y cos(Tr(z + 4y + 0.25)). The relation between accuracy and execution time required

to achieve that accuracy is plotted in Figure 1 for both methods. We can see that when low

accuracy is required, the finite-difference multigrid method is much faster than the line relaxation

spectral multigrid method, but the situation is reversed when high accuracy is required. The

crossover point for this problem is at an accuracy of about one percent error. The same conclusion

would hold for finite-difference methods of higher (fixed) orders, although the crossow_r point

would shift. Variable-order finite-difference methods could be expected to perform more like the

spectral method, at a cost of considerable complexity.

Matrix Diagonalization Technique

The matrix diagonalization technique is introduced in (ref. 5) as a direct solver for the

Chebyshev spectral approximation to the Poisson equation with Dirichlet boundary conditions.

This technique requires a preprocessing step, which involves computing the eigenvalues and

eigenvectors of a one-dimensional operator matrix (O(N 3) operations), and a solution step, which

involves one-dimensional matrix multiplications (O(N 3) operations).

224

e

txO

0
-,,._

8
U.l

lO

-2 2
-12

, _ ! i J i

I I l 1 1 J

-10 -8 -6 -4 -2 0
Solution Error Logl0(Error)

Figure 1. Execution time: LR-SMG vs FD-MG

To compare execution times, we note that the line relaxation spectral multigrid method

usually takes approximately 10 V-cycles to solve to the level of machine precision. Thus, Figure 2

compares the execution time of 10 V-cycles of the line relaxation spectral multigrid method with

the execution time of solving the same problem directly by the matrix diagonalization method

(including the preprocessing step). These results show that the matrix diagonalization method is

quite fast for small grid sizes, but as the grid size grows, it becomes slower than the line relaxation

spectral multigrid method. This is because the line relaxation spectral multigrid method is an

O(N 2 log N) method, while the matrix diagonalization method requires O(N 3) operations (even

without the preprocessing step).

The matrix diagonalization technique is very efficient for problems with constant coefficients,

especially when repeated solutions are required. However, this technique can only handle problems
with constant coefficients. As shown below, the line relaxation spectral multigrid method is able to

solve problems with non-constant coefficients.

225

16OOO

14OOO

|) i ! j

LR-SMG --- Line Relaxation Spectral Multigrid Method

MD --- Matrix Diagonalization Technique

O

12000

10000

8OOO

60O0

4OOO LR-SMG

MD

2000

I I #.

0 100 200 300 400 500 600
Grid Size

700 800

Figure 2. Execution time: LR-SMG vs MD

Extension to Problems With Variable Coefficients

As a test problem with variable coefficients we consider

u(x, y) = g(x, y),

where the coefficient functions_and the true solution are

I_1,lyl < 1,

Ixl = 1, lyl= 1,

(24)

a(x,y) = b(x,y) = 1 + e'e(:°_(B_'(:_+y)), (25)

7r 7/

u(x,y) = sin(azrx + _) sin(alry + 7). (26)

The parameter ¢ measures how far the coefficients are away from the constant 1,/3 measures the
oscillation of the coefficients, and a measures the oscillation of the solution.

226

Implementation of the Line Relaxation Spectral Multigrid Method

The implementation of the finite-difference version of the line rela_:_.tion method is basically the

same as for the constant coefficient case except for the following:

1. On each grid line, the one-dimensional problem is not a Helmholtz equation anymore. For

example, on a gird line y = 9k which is parallel to x-axis, we now solve a problem like

cQ (a(x, gk) _-_v(x, gk)) -- Vd(X, gk)V(X,_lk) m h(x, gk)Oz
(27)

by using a second-order finite-difference approximation on the Chebyshev grid.

2. To compute values of Vd(_Cj, flk), note that the interior equation in (24) can be rewritten as

02u Oa Ou 02u Ob Ou
a b-z-n - f, Ixl, lYl < 1 (28)

Ox 2 Ox Oz ay _ Oy Oy

and the Chebyshev collocation approximation to (28) can be written as

(29)

where .A and B are diagonal matrices containing the values of the coefficients a(_cj, Yk) and

b(_cj, 9k), As and B, are diagonal matrices containing the values of the derivatives _-_,a(hzj, flk)

and _yb(_cj,gk) (which can be computed from values a(_2j,gk) and b(hcj,gk)), and 79x, T_x,,

79y, and :Dyy are Chebyshev differentiation matrices. Therefore, 7-/ = -.A:Dxx - .A,T>x and

V = --13_yy --]3y79y; generating the diagonal entries of 7-/and V is straightforward.

. On coarse grids, we need to use so-called "filtered" coefficients a(x, y) and b(x, y) to formulate

the coarse grid problems; i.e., the coefficients a(x, y) and b(x, y) are evaluated on the finest grid

and then transferred to the coarser grids by Chebyshev restriction (ref. 3).

Computational Results

We have run the line relaxation spectral multigrid method for different values of parameters ¢, a

and/3. For a = 1.0 and N, = Ny = 32, the smoothing factor is graphed in Figure 3 as a function of

¢ and a. Here we have chosen to measure the smoothing by the "smoothing factor per work unit"

defined by/z,,, = (r2/rl) r°/'c, where rl and r2 are residual norms before and after one multigrid

V-cycle, T is the execution time of one cycle and TO is the execution time of one relaxation. These

results show that for a wide range of _ and fl, the method converges relatively quickly.

In (ref. 3) the same test problem (24) was solved using the Richardson relaxation (5) using

two-dimensional finite-difference preconditioning; incomplete LU decomposition was used to

approximately solve the finite difference approximation on the Chebyshev grid. With only limited
details of the formulation and results of this method, it is difficult to make a complete comparison

to the line relaxation method considered here. However, it appears that the line relaxation method

gives convergence factors at least as small as those in (ref. 3); moreover, it is simpler.

227

3.0

¢--
O

,-,2.0
Id_l

E

¢_ 1.O
a...

, , I |,, I !

5.0 Parameter Beta

Figure 3.

10.0

Smoothing factors for problems with variable coefficients.

CONCLUSIONS

The pointwise preconditioning is simple and fast to apply. It is very efficient for one-dimensional

problems. Unfortunately, it does not give fast multigrid convergence for two-dimensional problems.

The line relaxation method provides anew approach to accelerate the multigrid Chebyshev

spectral method for solving (wo-dimensional ell]p-t{c problems. It is efficient (yielding multigrid

smoothing factors no larger than 0.5 per sweep) andinexpensive (requiring O(N 2 log N) operations

per sweep). - _. - .-

When high accuracy is required, the spectral multigrid method using line relaxation is orders

of magnitude faster than a conventional finite-difference multigrid method, due primarily to the

exponential convergence of the spectral discretization. Compared to other methods for solving

the discrete spectral equations, the line relaxation method also has advantages: it is comparable

in efficiency to matrix diagonalization and finite-difference preconditioned Richardson relaxation,

but can solve problems with variable coefficients which the former cannot, and is simpler than the
latter.

228

REFERENCES

1. Canuto; Hussaini; Quarteroni; and Zang: Spectral Methods in Fluid Dynamics. Springer-Verlag,

1988.

2. Zang, T. A.; Wong, Y. S.; and Hussaini, M. Y.: Spectral multigrid methods for elliptic

equations. J. Comp. Phys., vol. 48, 1982, pp. 485-501.

3. Zang, T. A.; Wong, Y. S.; and Hussaini, M. Y.: Spectral multigrid methods for elliptic equations

II. J. Comp. Phys., vol. 54, 1984, pp. 489-507.

4. Brandt, A.: Multigrid Techniques: 1983 Guide with Applications to Fluid Dynamics, 1984.

[Available from GMD, Postfach 1240, D-5202 St. Augustin, 1, F.R.G.]

5. Haidvogel, Dale B.; Zang, Thomas: The Accurate Solution of Poisson's Equation by Expansion

in Chebyshev Polynomials. J. Comp. Phys., vol. 30, 1997, pp. 167-180.

229

i]i i _i i _ i k _i _

T_

MULTIGRID METHODS FOR A SEMILINEAR PDE

IN THE THEORY OF PSEUDOPLASTIC FLUIDS*

Van Emden Henson

Department of Mathematics

Naval Postgraduate School

Monterey, CA

.5"/d ,3/<Tz

41

; 94-2 689

A. W. Shaker

Department of Mathematics

Naval Postgraduate School

Monterey, CA

SUMMARY

We show that by certain transformations the boundary layer equations for the class of

non-Newtonian fluids named pseudoplastic can be generalized in the form

Au + p(x)u-_ = O, x E _ C R '_, n> 1

under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of

the existence, uniqueness, and analyticity of the solutions for this problem. We also establish

numerical solutions in one- and two-dimensional regions using multigrid methods.

INTRODUCTION

In the last two decades, solutions of the singular semilinear equation

Au + p(x)u -)' = 0, x E _ C R '_ (1)

have been extensively studied. Various existence and uniqueness results are given in [1], [2], and [3],

to name a few. More recently, in [4], it is shown that by certain transformations the boundary layer

equations for the class of non-Newtonian fluids named p._e_ldopla._Yc can be generalized in the above

form for the ODE case n = 1. Under this physical interpretation the above equation, considered in

the context of partial differential equations (n > 1), has been the subject of much study. The

equation has a unique classical solution with a bounded domain _, where p(x) is a sufficiently

regular function which is positive on _t [5]. There exist entire solutions with)_ E (0, 1) for p(x)

sufficiently regular ([6], [7]). This is generalized to all _ > 0 via the upper and lower solution

method ([8]) or other methods ([9]).

*This work was supported in part by the the Naval Postgraduate School Research Council under grant No. ZZ867-

ZZ899/5986

PRK-C_d:NN@ PAGE BLANK NOT FILMED

2.31

The following sections provide a survey of both theoretical and numerical results in this area

including a physical derivation [4], existence theorems for both the ODE and PDE cases with a

proof of a main result [8], and our numerical results. We conclude with a discussion of a new

technique and some open questions for further research.

PRELIMINARIES

_U

A non-Newtonian fluid is called ps(udoplastic if the shear stress r and the strain rate _yy are

related as -,
10uJ

1_!

where k is a p_itive constant. That is, the absolute value of the shear stress increases with respect

to the absolute value of the strain rate less than line_!y:

In this paper, we study solutions of the singular semilinear equation (1) where)_ > 0 and _2 is a

domain in R n, n > 1. In the following section we show that through a series of transformations the

boundary layer equations for the class of pseudoplastic fluids under the classical conditions for a

steady flow over a semi-infinite flat plate can be generalized into the well-known Blasius problem

f'-q- ff =O,

f(O)-- f'(O)=O, f'(oo)-- I

for the shear function, which arises from the standard Newtonian fluid case.

DERIVATION OF THE PROBLEM

For n = 1 equation (1) arises in the study of pseudoplastic fluids. We consider a two-dimensional

incompressible flow of low viscosity along a plane wall. We denote by ff = (u, v) as the fluid velocity

in the boundary layer and u× (x) in the main stream. Since there is no velocity on the wall and the
_t ..

fluid takes the velocity of the main stream u _ (x) outside the boundary layer, we see that _yy is

large near the wall which causes a significant transfer of momentum in the x direction.

The boundary layer equations for this model include a continuity equation and a momentum

equation in the x direction.

with boundary condtions

Ou cgu

a--; =o
Ou Ou 10r_

y p Oy

u(x,o) = v(x,o) = o,

= (x)

(2)

232

Y

///////////////////////
--.ib-

TT

D

= [(u, v) in boundary layer
[u,_ (x) in main stream

Figure 1: 2-D flow of low viscosity along a plane wall.

= K Ou _' is the shear stress.
where _'x_ Oy

Note that (2) has 2 coupled equations in 3 dependent variables, u, v, and rx_. To reduce it to a

single higher-order equation in only 1 dependent variable, we introduce the Lagrange stream

function ¢(x, y) such that
0¢ 0¢

_y _°
_ =. , V -=- OX

Then the momentum equation becomes

0¢ 02¢ 0¢ 02¢ 0 02¢

_ 5_-_y- _ _ - _(_-Vy_) • (3)

K
where v --- --, while the continuity equation is clearly satisfied by ¢.

P

a¢ . bLet f -- ._____:_, r/= YV_.--:, for some a,b. Then (3) becomes
.¢u_,ux

f,, + f(f,)2-_ = 0 (4)

with f(0) = if(0) = 0

f'(_)=l

where f = f(r/). (Observe that if a = 1 (4) is the well-known Blasius equation.) Employing the

Crocco-like transformation

u = if(r/), if(u)= u'= f"(r/)

(4) becomes
g'_9 '' + (or - 1)ge'-l(9') 2 + u = 0

233

with g'(0) = 0, gel) = 0, where 9 = g(u). Finally the transformation G = g_ leads to the singular

boundary value problem

G" + o_uG -1/'_ = 0, O < u, c_ < 1,

G'(O) = Gel) = 0

1 x

of the form (el) with A = _, u = x, p = _.

EXISTENCE AND UNIQUENESS RESULTS

In the first part of :this section we study the results in finite and infinite domains; in the second

we discuss methods that are commonly used to approach the problem.

Theorems

=

Let 12 be a bounded domain in R _, n > 1 with smooth boundary Oft (of class C 2+_, 0 < a < 1).
Let p(x) be of C_(Ft) and positive on l), A > 0.

Theorem 1 (Lazer-McKenr_a [5]). The problem : . :

Au + p(x)u -_ =0, x e f_

.... u Ioa= 0

has a unique positive sotutio,, u(x) i,, f't tvith u C C'+"(gt) A ((_). Fu,'therroore let ¢ be an

eigenfunction correspondil_g to the smallest eigenvalue Aa of the problem

such that ¢1(x) > O, x E _ and ,k > 1.

b _2/0+_)
1W1 _ I£ _____b2(_/(1+_)

A¢+_¢= 0, xef_
¢ loa= 0

Then there exists a unique bl, b2 > 0 such tl_al

Or/ fi,

In the case ft = R '_, n > 1, we study the results under conditions n = 1, n = 2, n > 3. Observe

that if n = 1, since p, y > 0, y" + py-a = 0 we have y" > 0 and thus y' +. Hence 0 < y'(c_) < 0o.

Theorem 2 (Taliafirro [3]) 7"fie problem

ha.s a uniqur positive_ .sohttiol_ y(x) if

whe ,'e c_, c E R 1, o_ > O.

y" + p(x)u -_ = 0

=
=o

f_' x-aPex) dx < c_

F,,,'thr,'more y(oo) < c_ (f and o,,ly (f fo_'xp(x)dx < c_.

234

The following theoremdescribesthe asymptotic behaviorsof the solution.

Theorem 3 (Toliafi fro [3])

• [JO < y'(co) < co and fl'X-x+lp(x)dx < co. a,b > 0 then

2."7.,
y(x) = ax + b - a-)_(1 + o(1)) (_ - x)_-Xp(_)d_.

•]fy'(co)=0 and fo_'Xp(x)dx < co, a > 0 lh¢n

ffy(x) = a - a-A(1 + o(1)) (_ - x)p(_)d_.

• (/p, q > 0 arc continuous on [0, co), limx_._ q-_ = R > 0 andp(x)

z" +p(x)z -x = 0, z'(co) = 0;

o" + q(x)-;' = o, _'(co) = o

1

a,,d fo'=:xp(x)dx = co, then lim___, w/z = R-rr r .

Theorem 4 (h'usano-Swanson [7]). Th¢ problem

au = f(Ixl)u -x = o, x e R 2, 0 < _ < 1

has an _t_lirc positiv_ solution in R 2 with logarithmic growth at co if f(t) > O, t > O,

y(t) • C(O, co), a,d

-j _ t(logt)-a f(t)dt < co.

A function u(x) is said to be an entire solution of (1) if u • C_,.(R '_) and u satisfies the equation

pointwise in R n.

Theorem 5 (S'hd'_r [8]) Th_ problem

Au + p(x)u -_ = 0, x • R n, A > O

has an _ntir_ positiv_ solution u(x) such that

c_ _< ,4x)lxl '_''-_' _< c_

for ._omc cl,c2 and 0 < q < 1 as x--_ co _f

z. • CS(R), > o fo,. • R"\{0}:

2. tl,, ,'_ c.ri.st._ 0 < c < 1 such that c¢(Ixl) _<p(x)_< ¢(Ixl) ,,,z,,., ¢(t)- maxlxl=tp(x). t• [0, c_);

3. fa_ t"-_+_("-_)¢(t)dt < co.

235

Methods

in generalthere are two methodsthat are commonlyusedin proving existenceand uniquenessof
solutions for equations of type (1), namely Schauder's fixcd poi_t lhoc rc 177and Barrier M_thod_.

Since the former is standard we elaborate here only on the latter.

Let fl be a smoothly bounded domain in R n. ¢(x) is said to be an upper (lower) solution of the

problem

au + l(z, u) = 0, z e

u]on= 0

(5)

ifA¢+f(x,¢) <0, xe_, ¢(x)>0xe0n(¢+f(x,¢) >0, x•gt,¢(x)<0x•0n).

Theorem 6 (Sattinger [10]). Let Cz be an upper solution and ¢2 be a lower _ol,tion of (5), and let

f be locally [I_lder coatinuous in ft. IfCz(x) >_ ¢2(x) in fl, tl, en (5) he,.s _ solution u ._'uch that

In the case when _ = R _ we say ¢ is an upper (lower) solution of

+ = 0 (6)

if A¢ + f(x, ¢) _< 0 x • R n (for lower solution, A¢ + f(x, ¢) >_ 0).

Theorem 7 (Ni Ill]). L_I ¢_ and ¢2 be an upper and a lower sol,lion of equatio,_ (6), such that

Cz >_ ¢2 x • R n. If f i.¢ locally Hb'Ider contir_uous in x and locally Lip.schitz continuo_ts in u, lhcn

(6) has a solut;o_ u _,,;tl, ¢_(x) < u(x) < ¢_(x), x • R".

An Example,

Consider the problem

u" + _u - u 3 = 0, x • (0, 7r)
IZ= 0, x=0, Tr.

It is easy to show that ¢1(x) = Rx 1/2 for some R large is an upper solution, and ¢2(x) = esinx for

some e small is a lower solution of this problem. Clearly ¢_(x) >_ ¢2(x) for x • [0, _r]. Thus by the

above theorem there is a solution u(x) such that e sin x <_ u(x) < Rx_, x • [0, 7r]. Since the problem

is homogeneous we conclude that the problem has at least three solutions, namely, u, -u and the

trivial solution.

MULTIGRID SOLUTION OF THE PROBLEM

In this section we present some numerical results for solving the problem

Au + p(x) u -_ = 0 x • _2
u(z) = 0 z • 0_.

236

Specifically,wedescribeNewton's method for non-linear systemsto solutionsand multigrid
V - cycle and FMV methods• We have implemented all of these methods for both the one- and

two-dimensional cases, using (respectively) the unit interval and the unit square for Ft. In each case

we use a straightforward finite-difference discretization, employing the standard second-order

difference approximation for the second derivative operator. For the one-dimensional problem we

define the grid of (N + 1) points Xk = jh, for k = 0, 1,... N, where h is the mesh parameter 1/N.

The second derivative operator is then approximated by

d2u I Uk-1 -- 2uk + Uk+l_X2 x_. ---- h2 q- O(h2), (7)

where Uk approximates U(Xk). For the non-linear term p(x)u(x) -_' we use the nodal values, Pk uk

Since u0 = UN = 0, this results in the non-linear system of equations

1

h 2

-2 1

1 -2

o

1

1

Ul

'it 2

UN-2

UN-1

p_ u-f _
p2 u-2 ;_ '

i ' I
PN-2 UN_2

. pN- I

0

0

0

0

= (8)

Letting u represent the vector of unknowns, we may write the system as Hu + g(u) -- 0, where H

is the tridiagonal matrix and g is the non-linear vector function.

For the two-dimensional case we take the tensor product of the (N + 1)-point grid in the x

direction with an identical (N + 1)-point grid in the y direction, yielding an (N + 1)2-point regular

grid covering the unit square. The difference operator for the two-dimensional problem is

0%1 =
Ox2 + OY2] Xj,k

Uj-l,k -- 2Uj,k + Uj+l,k +

h 2

Uj,k_ 1 -- 2Uj,k + uj,k+l
h 2 + O(h2).

Numbering the unknowns lexicographically by lines of constant y, we obtain the

(9)

nonlinear system

A B

B A B

B A B

B A

Ul

U2

_tN-2

_tN-1

Wl

W2

+

"UIN_ 2

WN-1

0

0

0

0

(10)

where here us denotes the (N - 1)-length vector of unknowns us,k for k = 1, 2,..•, N - 1

corresponding to the jth grid-line in the y direction, and A and B are (N - 1) x (N - 1) matrices

1
A _-

h 2

"4 1

1 -4 1

1 -4

1

1

-4

1
B m_ --

h 2

-1

-1

-1

-1

237

u -_ for k = 1,2, N- 1. OnceThe (N - 1)-length vectors wj contain the non-linear entries Pj,k j,k, "'",

again, we may write the system as Hu + g(u) = 0, where H is the block tri-diagonal matrix and g

is the non-linear vector function containing the wj's.

Solution techniques

The classical solution technique for (8) or (10) is to apply Newton's method for non-linear

systems. We write the system as F(u) = O, where F(u) = Hu + g(u). Each step of the iteration

is then given by

u +- u- [JF(u)l-lF(u)

where the Jacobian of the system is given by

[JR(u)] = H + D

with H the linear part of F and D a diagonal matrix whose diagonal entries are the derivatives of

the entries of g, for example -)_p(xj,k)uS_ -1.

Naturally, the Jacobian is not inverted at each step, but rather, we solve the system

[JF(u)]y---- --F(u) and then make the correction u 4- u + y. We examined two methods for

solving the system at each step, namely LU decomposition and a multigrid FMV cycle.

Newton's method converges quadratically. However, since each step involves inverting a system,

it tends to be very slow. While the use of the FMV solver speeds the method up somewhat, it still

is slower than the techniques we present next. It has long been known ([12], [13]) that on certain

problems non-linear analogs to the classical Jacobi or Gauss-Seidel iteration methods could be

employed with some success. Technically, one sweep of such a method means that for

j = 1, 2,..., N- 1 (or (N - 1) 2 for the two-dimensional problem) one solves, via the scalar

Newton's method, the jth non-linear equation in the system F(u) = 0 for the jth unknown. As in

the linear case, if the old values u are used throughout the sweep this is the Newton-Jacobi method,

while if the updated values are employed as they become available it is the Newton-Gauss-Seidel

method. In practice the jth equation is not actually solved, but rather, a few (one or two) steps of

the scalar Newton's method is performed on each equation in turn.

The Newton-Jacobi and Newton-Gauss-Seidel iterations, however, typically behave in the same

fashion that is observed in their linear counterparts. That is, the iteration generally progresses

rapidly toward a solution with the first few sweeps, but then stalls out so that each additional sweep

produces very little improvement. The reason behind this isthe same as that seen in the linear case.

The method stalls after the non-linear relaxation has successfully eliminated the= oscillatory portion

of the error, which it eliminates rapidly, but is unable to effectively treat the smooth portion of the

error. This is precisely the difficulty that multigrid methods were devised to overcome.

At the heart of multigrid is the coarse-grid correction [14]. Many common relaxation iterative

relaxation methods for solving a lin_<_v problem Au = f have the property that the relaxation

effectively eliminates the high-frequency (oscillatory) components of the error but leave the low

frequency (smooth) components essentially unaffected. However, because the error i sssmooth after

the relaxation, it may be represented accurately on acoarser grid, on which]t aIs0_ppears more

oscillatory (relatively). Relaxation on this coarser grid then eliminates the oscillatory components

of the coarse-grid error, which cannot be eliminated on the fine grid. The coarse-grid correction for

238

a linear problem may be written as

u h ,-- p"u h + Ihh(A2h)-lI_h(f h -- Ahp"u h) (11)

where P is the relaxation matrix, v is the number of relaxations, Ihh is a prolong_dio, or

i_t_ _pohdion matrix mapping coarse-grid vectors to the fine grid, _h h is a rcstrictio_ matrix

mapping fine-grid vectors to the coarse grid, and A 2h is a coarse-grid version of the original matrix

A. A crucial feature is that on the coarse grid _2h the problem to be solved is the residual equation

Ae = r, where the residual is defined r = f - Au and e is the error. That is, if u* is the exact

solution, then Ae = A(u* - u) = f - Au = r.

For _onli_car problems the residual equation doesn't hold. Instead, we write the nonlinear

equivalent of the residual equation,

F(u + e) - F(u) = r.

This equation is to be solved on the coarse grid, so we write

F2h(I2hhU h + e2h) -- F2h(I_hu h) = I_h(f h- Fa(uh)), (12)

or

F2h(u 2h) = I_h(f h -- Fh(uh)) + F2h(I_h).

The coarse-grid correction is then performed by solving (12) for u 2h = I_hu h + e2h, and then

making the correction u h _-- u h + Ihh(U 2h -- I_huh). This gives the full approximation scheme [15]

u h _ PV(uh) + Ihh((F2h)-l(I_h(f h Fh(pv(uh))) + F2h(I_hpv(uh))) -- I_hpv(uh)),

where P is a nonlinear relaxation scheme.

For both the linear and nonlinear problems, the solution of the coarse-grid problem is computed

using the same coarse-grid correction scheme as is being employed to solve the fine-grid problem.

This leads to the multigrid V-cych _scheme, which (for the nonlinear problem using ['AS) is

described recursively as follows.

u h e--- FASVh(u h, fh, t/l, tt2)

1. Perform vl non-linear relaxation sweeps times on Fh(u h) = fh with initial guess u h.

2. If _h is the coarsest grid, then go to 4. Else:

f" = Iih(f" -- Fh(ub) + f_h(Iihu _)

U 2h _ 0

u2h __. FASV2h(u2h, f2h, vl, v2).

3. Correct u h _-- u h + Ihh(u 2h- I2huh).

4. Perform v2 non-linear relaxation sweeps times on Fh(u h) ---- fh with initial guess u h.

An important consideration for this (or any) iterative method is the choice of a good initial

guess. Clearly a better initial guess will reduce the overall effort required to obtain an acceptable

solution. A standard approach in multigrid is to obtain a good initial guess by first solving the

problem on a coarse grid, and then interpolating that solution to the fine-grid for use as an initial

guess. Solving this coarse-grid problem, in turn, will be easier if an initial guess is obtained by first

solving the problem on a still coarser grid. Applying this idea recursively leads the Full Multigrid

FMC scheme, which (applied to the non-linear/_.4._'|" scheme) may be described as follows:

u h _ FASFMGh(u h, vl, v2)

239

1. If D h is the coarsest grid, then go to 3. Else:

f2h = I_h(fh_ Fh(uh)) + f2h(I_hu h)

u 2h _ 0

u2h +_ FASFMG2h(u2h, f2h, 111,V2).

2. Correct u h _ u h + I#h u 2h.

3. u h *--- FASVh(u h, fh, Vl, v2).

Numerical results for multigrid methods

We have implemented the FASV using Newton-Jacobi and Red-black Newton-Gauss-Seidel

iteration schemes. (Our implementation was in Matlab using vector arithmetic. We elected not to

analyse Newton-Gauss-Seidel since it is not vectorizable. We did encode it, however, and found

that the slowness of the for loops overwhelmed the speed of convergence.) Several different choices

for A, p(x) and p(x, y) were used, as were several sets of relaxation parameters.

Table 1 gives some quantitative information regarding the performance of the method,

comparing convergence rates for various choices of parameters. The results shown were obtained

using the Red-black Newton-Gauss-Seidel relaxation. We find that for this problem we are able to

obtain convergence rates that are similar to those obtained on the linear elliptic model problems for

which multigrid is best known ([14], [16], [17]). Data for the one-dimensional problem are not

shown, however, they are very similar to the two-dimensional case.

Dimension p(e)

2xy

2 sin(2nx) sin(_-y)

x/v2

A Fine-grid Average V-cycle

size convergence factor

2

5

8

2

5

8

2

2

8

63 x 63

63 × 63

63 x 63

0.051

0.050

0.078

0.060

0.063

0.104

0.059

0.060

0.086

Table 1

Additionally, we have implemented the FASFMG using Newton-Jacobi and Red-black

Newton-Gauss-Seidel iteration schemes. Again, we find that the performance of the method is

compatible with that found for FMG applied to the linear model problems ([15], [17]).

CONCLUSIONS

Our survey of existence and uniqueness results has shown the problem

Au + p(x) u -_ = 0 x _ fZ

24O

is guaranteedto haveunique solutionsunder certain conditions, althoughthesesolutionswill not be
known in closedform. The problemarisesin certain non-Newtonianfluids problems,sothere is
someinterest in actually computing solutions. We haveshownthat for homogeneousDirichlet
boundary conditions on the unit interval and the unit square,multigrid methodsappear to provide
an efficient meansof solution for reasonablechoicesof p(x).

We note, however, that an actual convergence proof for the FAS method would be very difficult

to obtain, in that such proofs normally require that we be able to decompose the space of grid

functions into two operator-subspaces. Error components in one are annihilated by relaxation,

while those in the other subspace are annihilated by coarse-grid correction. While such analysis is

achieved for linear problems, non-linear problems generally can only be treated by linearization

near a solution. In point of fact, the literature is remarkably sparse in the area of founding theory

for the I:.4S method.

A new technique, called multih vcl projection rn_lhod_ (PML) has recently been introduced, [18]

in an effort to provide a unifying, thematic approach to the design of a multilevel solver for a given

problem. The main feature of PML methods is that the only basic choices that must be made

concern the subspaces that will be used in relaxation and coarsening. All other components of the

method, such as interlevel transfers, scaring, coarse-level problems, etc., are determined by

projection between appropriate subspaces. In [18], several prototypical problems are developed to

illustrate the principals involved. It now appears that the best hope of obtaining a strong founding

theory for multilevel treatment of nonlinear problems may well be through careful and judicious

application of PML, and our future research into solution methods for the problems we have

discussed here will be aimed in that direction.

ACKNOWLEDGEMENTS

The authors wish to thank Steve McCormick for his helpful suggestions throughout the project.

This work was supported, in part, by the Research Council of the Naval Postgraduate School.

REFERENCES

[1] M. G. Crandall, P. H. Rabinowitz, and L. Tartar. On a Dirichlet problem with a singular

nonlinearity. Comm. Part. Diff. Eq., 2(2):193-222, 1977.

[2] W. Fulks and L. S. Maybee. A singular nonlinear equation. Osak(_ Math. J., 12:1-19, 1960.

[3] S. Taliaferro. On the positive solution of y" + ¢(t)y -_ = O. Nonlinear Analysis, Theory,

[tl_ tlwd.__ $__':Applicalions, 2(4):437-446, 1978.

[4] A. J. Callegari and A. Nachman. A nonlinear singular boundary value problem in the theory of

psendoplastic fluids. S/AM J. Appl..1f, ll,, 30:275-281, 1980.

[5] A. C. Lazer and P. J. McKenna. On a singular nonlinear elliptic boundary value problem.

Proc_edi,g._ of lh_ AMS, 111:721-730, 1991.

[6] A. Edelson. Entire solutions of singular elliptic equations. J. Matl_. A1_al. AppI., 139:523-532,

1989.

241

[7] T. Kusano and A. Swanson. Entire positive solutions of singular semilinear elliptic equations.

Japan J. Math., 11, 1985.

[8] A. W. Shaker. On singular semilinear elliptic equations. J. Malh. Anal. a_d Appl.,

173(1) :222-228, 1993.

[9] R. Dalmasso. Solutions d'equations elliptiques semilineaires singulieres..l_ali di matematica

p_lra el applicata serie quarta, 153:191-201, 1988.

[10] D. H. Sattinger. Topics in stability and bifurcatio!_ theory. Springer-Verlag, Berlin, 1973.

[11] W. Ni. On the elliptic equation 6u + k(x)u ('_+2)/('_-2) = 0, its generalization and application in

geometry. Indiana Univ. Math. J., 31(optional):493-525, 1982.

[12] Louis B. Rall. Computational sol utio_ of nonlinear operator equations. Robert E. Krieger

Publishing Company, Huntington, New York, 1979.

[13] James M. Ortega. Numerical analysis, a second course. Society for Industrial and Applied

Mathematics, Philadelphia, Pa., 1979.

[14] William L. Briggs. A Multigrid Tutorial. Society for Industrial and Applied Mathematics,

Philadelphia, 1987.

[15] Achi Brandt. Mulitgrid techniques: 198_/ guide with application to fluid dynamics.

GMD-Studien Nr. 85. Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin, 1984.

[16] Jan Mandel, Stephen F. McCormick, and R. Bank. Variational multigrid theory. In Stephen F.

McCormick, editor, Multigrid methods, volume 3 of Frontiers in applied mathematics, pages

i31-177, Philadelphia, PA, 1987. Society for industrial and Applied Mathematics.

[17] K. Stiiben and Ulb_Ch _ottenberg. Muitigrid methods: Fundamental algorithms, model

problem analysis and applications. In W. Hackbusch and U. Trottenberg, editors, Multigrid

methods, proceedings of a conference held at I(hh_-Porz, November 23-27, I981, volume 960 of

Lecture notes in mathematics, pages 1-176, Berlin, 1982. Springer-Verlag.

[18] Stephen F. McCormick. Multilevel projection m _th ods fo r pa trial d(ffr ten t i,_l equ atio ns,

volume 62 of CBMS-NSF regional conference ._rric._ i17 applied mathematic._. Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1992.

242

/

A Multilevel Adaptive Projection Method for v :F) ,_f

Unsteady Incompressible FloW' _94,._!@t_ O" _- -

Louis H. Howell

Lawrence Livermore National Laboratory

Livermore, CA 94550

ABSTRACT

There are two main requirements for practical simulation of unsteady flow at high

Reynolds number: the algorithm must accurately propagate discontinuous flow fields

without excessive artificial viscosity, and it must have some adaptive capability to

concentrate computational effort where it is most needed. We satisfy the first of

these requirements with a second-order Godunov method similar to those used for

high-speed flows with shocks, and the second with a grid-based refinement scheme
which avoids some of the drawbacks associated with unstructured meshes.

These two features of our algorithm place certain constraints on the projection

method used to enforce incompressibility. Velocities are cell-based, leading to a Lapla-

cian stencil for the projection which decouples adjacent grid points. We discuss fea-

tures of the multigrid and multilevel iteration schemes required for solution of the

resulting decoupled problem. Variable-density flows require use of a modified projec-

tion operator--we have found a multigrid method for this modified projection that

successfully handles density jumps of thousands to one. Numerical results are shown

for the 2D adaptive and 3D variable-density algorithms.

INTRODUCTION

The incompressible flow algorithm presented by Bell, Colella and Claz [3] combines

the original projection method of Chorin [9, 10] with the Godunov methodology

developed by Colella [11] to yield a robust scheme which is second-order in both

space and time. In [5] Bell and Marcus extend this method to handle flows involving

spatial density variations.

Originally developed for gas dynamics problems with strong shocks, the second-

order Godunov technology gives the algorithm the ability to propagate discontinuous

*This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48. Support was provided by the
Applied Mathematical Sciences Program of the Office of Energy Research under contract No. W-
7405-Eng-48, and by the Defense Nuclear Agency under IACRO 93-817.

243

flow fields or density jumps without introducing nonphysical oscillations, violating

conservation laws, or employing unnecessary dissipation. The resulting schemes are

therefore appropriate for studying unsteady flows with little or no viscosity. The

projection portion of the algorithm enforces incompressibility without the need for

an artificial pressure boundary condition.

The most natural discretization for Godunov methods involves storing all velocity

components at the centers of grid cells. Node-based variants are not difficult to

obtain, but the requirement that all components be stored at the same points is a

fairly strong one. Formulations of the projection using the staggered grid system of

Harlow and Welsh [13] are thus largely incompatible with the Godunov approach. Use

of collocated velocities, however, leads to unusual difference stencils for the projection

which decouple adjacent grid cells.

We have developed extensions to the algorithms of [3] and [5], the most important

of which are a reformulation of the methods on an adaptive hierarchy of grids, and

the use of multigrid and multilevel iteration techniques to speed up computation of

the projection. While we have made some attempt to keep separate the questions of

how to formulate the projection versus how to solve it, there has inevitably been some

interplay between these two halves of the problem. The decoupled difference stencils

used by the projection in uniform parts of the grid place certain requirements on the

multigrid scheme, while the need for efficient convergence of the multilevel iteration

influences the choice of derivative stencils across coarse-fine grid interfaces.

These issues, concerning the formulation of the projection and its solution via

multigrid methods, are the primary concern of this paper. Most of this material

is new, though the need for a decoupled multigrid stencil was discussed briefly in

[4]. The detailed formulation of the Godunov module, methods for error estimation

and regridding, and the addition of viscous terms to the equations are all discussed

in another paper, currently in preparation. These subjects will therefore be given

only the most cursory attention in the present work. We will, however, describe

the time-stepping procedure, so as to place the projection in its proper context as a

component of the algorithm. This will be part of the general overview given in the

next section. The section after that discusses the multigrid projection, while the final

section presents some examples and numerical results.

....... OVERVIEW OF THE METHOD

The equations we are attempting to solve are the incompressible Euler equations

with finite-amplitude density variation,

Ut + (U-V)U - Vp, (1)
P

pt+(U.V)p = 0, (2)

V.U = 0, (3)

244

where U represents the velocity field, p represents the hydrodynamic pressure and p

represents the local mass density. We will denote the x and y components of velocity

by u and v, respectively.

The range of density variation in a problem may be moderate, as in the case of two

or more different gases mixing in a combustion chamber, or may be relatively large, as

in the 800-to-1 density jump at a water-air interface. Of course, many flows of interest

do not involve density variations at all--for these problems (2) may be discarded, or

similar equations may be used to advect passive quantities which do not affect the flow

field. (Our implementation of the adaptive scheme currently handles only constant-

density flows.) Flows with very small density variations are an intermediate case, as

they may not require the full variable-density formulation. As described in [5], these

flows may be modeled using what amounts to a constant-density projection method

with a Boussinesq forcing term added to (1).

From a computational point of view the most problematic term in (1-3) is the

pressure gradient. In contrast to the compressible case, pressure in incompressible flow

plays no thermodynamic role, and cannot be determined from an equation of state. Its

only function in the equations is to indirectly enforce the incompressibility constraint

(3). The essential idea of projection methods is to eliminate the pressure entirely,

by use of an operator which projects the velocity U onto the space of divergence-free

vector fields.

The theory behind the projection operator is based on the Hodge decomposition,

which provides that any vector field V can be decomposed into a divergence-free

component V d and the gradient of some scalar ¢. This decomposition can be made

unique through imposition of appropriate boundary conditions, e.g., no flow through

boundaries. It is also orthogonal, since divergence and gradient ave skew-adjoint with

respect to the usual inner products on scalar and vector fields.

Given operators D for divergence and G for gradient, either continuous or discrete,

a projection onto the space of divergence-free fields can be written as

P= I-C(DG)-ID. (4)

(The numerical inversion of DC takes the place of solving the "pressure Poisson

equation" that often appears in incompressible flow algorithms.) A modification

of this projection is required for variable-density flows. We want to decompose a

field into a divergence-free component and 1/p times the gradient of a scalar. The

appropriate form is

P,, = I-aG(DaG)-lD, (5)

where a = 1/p and orthogonality is now with respect to a p-weighted inner product.

In terms of this weighted projection, (1) can be written as

Ut = P,, [(-g. V)U]. (6)

To obtain a second-order temporal discretization of this equation (and (2)), we

use a fractional step process. First, the Godunov advection procedure is used to

245

compute (U. V)U and (U. V)p at the n + 1/2 time level. The density equation can

then be advanced immediately, while the projection is applied to (U. V)U n+'_ to give

a divergence-free approximation to Ut:

pn+l _ p,_
= -(V. V)p _+y-_, (7)

At

U_+I _ U n
- P. [-(U. V)U_+'/-']. (8)At

Since the p equation can be advanced first, pn+72 is available for use in the projection.

The Godunov method uses (1/p)Vp '_-1/2 to approximate the effect of the incompress-

ibility constraint on U,; the projection in (8) then yields an updated approximation

to (1/p)Vp n+l/2 to be used at the next time step.

We will not go into detail on the internal workings of the Godunov procedure here.

Suffice it to say that using approximations to time derivatives and limited slopes (Ux,

etc.) at cell centers at time n, U and p are extrapolated to cell edges (faces in 3D) at

time n + 1/2. Upwinding rules resolve the choices between values coming from either

side of an edge, then these edge values are differenced to yield the (U • V) terms

at cell centers at time n + 1/2. The detailed procedure we use is very similar to that

described in [3], with the variable-density enhancements given in [5], and an improved

treatment of the transverse derivative terms (vUv, etc.) as described in [4].

For a more thorough discussion of the Hodge decomposition, the incompressible

Godunov algorithm, and the time-stepping procedure, we refer the reader to [3] and

[5]. These papers deal exclusively with the single-grid case, but the adaptive case

requires no changes to the time-stepping method and only minimal modification to

the Godunov method, e.g., interpolation into ghost cells around the edges of fine

grids. An adaptive Godunov method for gas dynamics that is similar to our approach

is described in [7]. We describe the adaptive projection at the end of the next sec-

tion; other aspects of our adaptive incompressible algorithm will be addressed in a

forthcoming paper.

MULTIGRID PROJECTION

We now discuss a multigrid algorithm for computing the variable-density projec-

tion (5). For simplicity we restrict the notation to two dimensions, but the methods

presented are immediately extensible to 3D. A three-dimensional flow example is

included in the following section.

Given appropriate divergence and gradient stencils, a projection of the form (5)

will yield a velocity field which is discretely divergence-free to the limit imposed by

roundoff error. The projection will therefore be idempotent, i:e., repeated application

will not further modify the projected vector field. This is a valuable property for an

unsteady flow algorithm since the projection will be applied at every time step. If

D = -G T then the projection will also be orthogonal, yielding the nearest--in a

p-weighted sense---divergence-free field.

246

- *IF*q- • -7
t _ _ t __L

I I I _

I I l t

Figure 1: Decoupled grid structure: DaG¢ at cells marked '.' depends on ¢ at '.'

cells, a at '-' cells for x-differences, and a at '[' cells for y-differences. Residuals

from '.' cells are restricted by averaging to the cells marked with boxes on the next

coarser grid. For purposes of restriction and interpolation, these coarse and fine values

behave as if they were located at the points indicated by the arrows, rather than at

the centers of their respective cells.

The simplest choice is to use centered differences for both divergence and gradient:

1 1

(DU)i,j - Ax(Ui+_,/- ui-l,3) +-_y(Vij+l - v,,j-1), (9)

1 ¢,,j-1)) (10)(a¢)_j = (_-/_(¢,+1j 1- ¢,_,,j),h_y(¢,,j+1-

Composition of these then yields the elliptic stencil

(Daa¢)_,_
1

(n_)_[_,-,,j(¢,-2,j - ¢,,j) + _,+,,j(¢,+_,j- ¢,,91+
1

(z_y)_[_,,_-_(¢,,J-_- ¢,,9 + _,,j+l(¢,,j÷_- ¢,,91 (11)

which appears in the projection. The main calculation we have to perform is the

inversion of this expression--we have to solve DaG¢ = DV for ¢ given an input

vector field V. Boundary conditions for ¢ are determined by those for the velocity

field. Slip walls (inviscid flow) yield Neumann boundary Conditions for ¢, while in

periodic problems all quantities are, naturally, periodic. Though the linear system is

singular, solvability is provided by the special structure of the problem: if D = -G T,

then the range of G is orthogonal to the null space of D; therefore, any field in the

range of D is also in the range of DaG.

Ignoring the a's for the moment, we see that (ll) looks like a stretched version of

the familiar 5-point stencil for the Laplacian. The difference is that (11) provides for

no communication between adjacent grid points. Except for the effect of boundary

conditions, four distinct sets of grid points participate in four distinct linear systems.

Grids couple in pairs at wall boundaries, but the only local coupling comes from the

smoothness of the right hand side DV. Figure 1 illustrates the deeoupling pattern,
including the role of the a's.

247

Howeversmooth the initial right hand side, later residualsin a multigrid scheme
tend to havesignificant componentsat all wavenumbers.Multigrid dependson the
fact that a solution to a coarsenedsystem provides a good approximation to the
desired fine solution. It is not surprising, therefore,that every experimentwe have
tried where the coarseningprocedure combinedcomponentsfrom decoupledgrids
provedto bewildly divergent. On the other hand, coarseningschemeswhich respect
the decoupling lead to systems analogousto those arising from the usual 5-point

Laplacian, for which multigrid is quite effective.

Let us define transformations between coarse and fine index spaces as follows,

I = 2. Li/4J +imod 2, (12)

i = 4. [I/2J +Imod 2 (13)

and similarly for J, j. Capitals denote indices on the coarse grid, lower case on the fine

grid, and [J reduces its argument to the next lower (or equal) integer. Each coarse

point (I, J) then has four fine points associated with it: (i, j), (i, j + 2), (i + 2, j),

(i + 2,j + 2). These fine points do not appear to be quite centered around the coarse

point, which would complicate restriction and interpolation formulas. We observe,

however, that a centered pattern results if the points in question are each shifted to

the center of their local 2x2 blocks, as illustrated in Figure 1. This shifting does not

change the spatial relationship of any coupled points, even at the boundary, so for

multigrid purposes we can treat each coarse point as if it were centered among its

four associated fine points.

The simplest restriction formula gives a coarse cell the average of the values from

its associated fine cells, while the simplest interpolation formula distributes the coarse

value to each of the four fine cells (piecewise-constant interpolation). There are both

theoretical results and experiments, discussed in [17], which suggest that for second-

degree problems at least one of these must be replaced by a higher-order formula in

order to give satisfactory convergence rates. Our own experience does not bear out

this assertion. However, for difficult problems involving large density jumps we have

observed an improvement in robustness from use of a bilinear stencil for interpolation,

1 9
d?i,j : -_(¢l,J 9- 3¢,-2,j 9- 3¢i,j-2 9- _bI-2,J-2) (14)

and similarly for ¢i,j+2, etc. A smaller improvement resulted from the opposite choice,

bilinear restriction with piecewise-constant interpolation. Problems without difficult

density configurations did not show a consistent improvement in convergence rate

with either stencil. We use (14) routinely in our variable-density code, but use the

piecewise-constant formula in the constant-density adaptive code. Restriction is by

simple averaging in both cases.

We have now satisfactorily dealt with the decoupling problem for ¢, but what

about a, i.e., how to we form the elliptic stencil on coarser grids? It is apparent

from Figure 1 that a values do not occupy the same decoupled component of the grid

as ¢ and the residuals. Moreover, a values used for x-differences are on a different

component from those used for y-differences.

248

One possibility is to redefine the problem to place a's at the same points as ¢'s:

1

(DaG¢),,j - 2(Ax)2[(a,_2,j + a,,j)(¢,-2,j - ¢,,3) + (a,+2,j + a,,j)(¢,+2,j - ¢,d)] +
% £

1

2(z y) + - ¢,,j) + + - ¢,j)]. (15)

The hope is that a could be coarsened by averaging over associated cells, just as ¢ is.

Unfortunately, this scheme gives somewhat degraded accuracy, and more importantly,

horrible multigrid convergence rates for problems with large density variations.

The convergence rate of the multigrid cycle seems more strongly dependent on

the proper coarsening pattern for a than on any other single feature of the method.

The following procedure is in fact the only scheme we have tried that gave anything

approaching satisfactory results. We keep two different arrays of a values on coarser

grids, one for x-differences and one for y-differences. These are coarsened as follows:

6rx 1 x

y 1 y
= 6riY+2,j,),a,,j + (16)

where i' = 2I + Imod 2, j' = 2J + Jmod 2 and a x = a y = a on the fine grid.

Coarse stencils based on (11) and formed with these values perform well even in the

presence of sharp density interfaces. They only begin to fail when presented with

such nonphysical effects as large sawtooth variations in the density field.

One common approach to deriving coarse grid equations is to use the form RAP,

where R is the restriction operator, A is the elliptic stencil, and P is the interpolation

operator. Unfortunately, this approach does not give a usable stencil when applied

with piecewise-constant formulas for R and P, and higher-order transfer stencils give

rise to larger, more complicated coarse grid operators. Use of (16) can be motivated

in two ways, however. First, patterns like this one do appear in the RAP stencils,

even though those formulas have other drawbacks. Second, if we confine our attention

to one decoupled component of the grid, the a locations can be interpreted as the

edges between its cells. An analogy to a diffusion problem with ¢ as heat content and

a as conductivity then suggests an averaging along edges equivalent to (16).

A detailed discussion of multigrid for problems with difficult coeffÉcients can be

found in [1]. Our approach seems adequate for configurations likely to arise in practi-

cal projection problems, however, and the authors of [1] acknowledge certain patho-

logical cases where even their more complicated schemes will fail.

For our multigrid schedule we use the pattern called FMV in [8]--the F-cycle in

[17]--with smoothing by point Gauss-Seidel. Two smoothing steps before each grid

transfer operation, up or down, seems to give the best performance. In problems with

large density variations the Ganss-Seidel method alone does not give rapid conver-

gence on the coarsest grid, so we have replaced it at that level with an exact solver.

A direct method could be used here, but we have found it more convenient to employ

249

II • I II1

+

Figure 2: Examples of decoupled derivative stencils across a coarse-fine interface. The

crosses indicate a fine cell (left) and a coarse cell (right) at which y-derivatives are

evaluated. Bullets show which cells participate in the stencils. In each case, values

on the opposite side of the interface are interpolated in the transverse direction to

the circled points, giving three values on a line normal to the interface from which

the derivative can be computed.

a simple diagonally-preconditioned conjugate gradient method based on algorithm

10.3-1 and equation 10.3-3 from [12]. The conjugate gradient approach has the ad-

vantage in that it neither requires explicit storage of a matrix, nor special treatment

of the singular linear system.

This completes our description of the variable-density multigrid projection. One

variation should be noted in passing. To reformulate the 2D projection in cylindrical

(r-z) coordinates, it suffices to redefine a as x/p, where x = r becomes the radial

coordinate. No other change is required in the projection portion of the algorithm.

An adaptive version of the projection method can be described, at least roughly,

in terms of a few relatively minor additions to the single-grid algorithm. The details

of the implementation, however, are considerably more complicated, and we only

have a working program for the 2D constant-density flow case. Our purpose here is

not to give a step-by-step breakdown of the entire adaptive procedure, but rather

to highlight the ways in which a decoupled Laplacian stencil affects the multilevel

projection calculation. For the sake of brevity, we have decided not to burden this

discussion with explicit formulas--we trust that all necessary expressions can be easily

derived from the descriptions given in the text.

The structure of the grid hierarchy is similar to that used in [7]. A single rectangu-

lar grid covers the entire computational domain at the coarsest level. In "interesting"

regions of the flow, finer grid patches are laid down, refined from the coarse level by a

fixed ratio r. These finer grids are themselves rectangular, both to minimize program

overhead and to improve performance on vector architectures. If necessary, more lev-

els of grids can be created, but we impose a "proper-nesting" requirement that each

250

refined level I have a border of cells at level 1 - 1 separating it from still coarser levels.

The simplest choice for a refinement ratio is 2, but we often use 4 instead in order to

reduce both the number of refined levels and the amount of wasted storage allocated

to coarse grids underlying fine grids.

In contrast to approaches like that of [15], we have maintained a logical separation

between the multilevel iteration for the adaptive scheme, and the multigrid solvers

on individual grids. Our multilevel iteration proceeds as follows, where we assume

familiarity with the residual-correction formulation discussed in [8] and [17]:

- Start with an initial approximation to ¢, either 0 or the value obtained at the

previous time step.

- Repeat until residuals satisfy tolerance:

- Compute residual on all grids, including coarse-fine interfaces.

- Restrict residuals from fine to coarse grids.

- Set correction array to 0 at coarse level.

- For each level l, from coarse to fine, do:

- Execute FMV cycle for residual equation on each grid of level l, using

values from adjacent grids as boundary conditions if necessary.

- Add correction into ¢ at level I.

- Interpolate correction to next finer level, if any.

The convergence properties of this method depend on a coarse grid solution being

a satisfactory approximation to the solution on the composite grid. In order for this

to be the case, all interpolation, restriction, and difference stencils have to respect

the decoupling pattern. For the grid transfer operations, these formulas are like those

we have already discussed. Restriction is by simple averaging of associated cells. For

interpolation we have had best results with a higher-order method, a biquadratic

formula using coarse cells from the appropriate decoupled grid component. Unlike

the single-grid case, effective position shifts like those shown in Figure 1 are no longer

valid, so we use the actual positions of cell centers to derive the interpolation stencil.

Difference formulas across the grid interfaces are more problematic. Whereas

restriction and interpolation schemes affect only the convergence rate of the iteration,

the difference stencils determine the actual converged solution. Stencil outlines for

both fine and coarse points near the interface are shown in Figure 2. In both cases we

use quadratic interpolation to obtain third-order accurate values on the opposite side

of the interface, then a three-point difference formula to give a second-order accurate

derivative at the desired point. Composition of second-order derivatives in D and

G gives a Laplacian approximation that is first-order accurate along the interface,

sufficient for global second-order accuracy of the projected velocity field.

These derivative stencils are used for computing residuals and for obtaining di-

vergence and gradient in the projection formula. Note that D is no longer equal to

251

252

32 64 128 256

3.54926 8

4.16279 8

9.84036 13

0.907518 (3.91) 7

1.14104 (3.65) 7

4.7626 (2.07) 9

0.228655

0.293781

2.14014

1.29866 19 0.378418(3.43) 16 0.097241

7.26845 19 1.84558 (3.94)20 0.476259

0.802074 0.196431 (4.08) 0.0487401 (4.03)

(3.97) 7 0.0573795(3.98) 7

(3.88) 7 0.074023 (3.97) 7

(2.23) 11 0.876724 (2.44) 18

(3.89) 15 0.024058 (4.04) 14

(3.88) 21 0.123554 (3.85) 22

0.0121474(4.01)

Table 1: Convergence results for both variable-density and adaptive implementations

of the decoupled projection. For each case the problem was run with squ_are base

grids of four different sizes--32x32 through 256x256--to a final residual less than

i0=r°: The:numbers given for each run are the final c_-norm error in the velocity

field (times 1000),=the factor of improvement from the next coarser grid, and the

number of multigrid _cycles required: For the last run (adaptive code), 2-norm error

data is also given. A description of each problem is given in the text.

-G T. This means that the adaptive projection is no longer quite orthogonal, and we

have to add a slight correction to DV to make the system solvable. The alternative,

hbweverl-w0uId be to use less accurate stencils for_either D Or G at the interface,

which would seri0usly degrade the performance of the algorithm.

NUMERICAL EXAMPLES

Table 1 summarizes the convergence behavior of the projection for five different

problems. The domain is the unit square with no flow through the boundaries. In

each case we start with the divergence-_eevector field

u = (+0.2)(x+ 1)(Tr(y+ 1)cos_ry+sinTry)s{n_rx,

v = (-0.2)(y + 1)(Tr(x + 1)cosTrx + sin Trx) sin Try, (17)

add to it lip times the gradient of

¢ -1 (2 ()) ()COS X + X 3-- cos ry, 18
71" = :

then a_p_p_lythe projection. This should strip off the gradient portion of each field and

return the divergence-free portion (17). The five cases considered are: (1) constant

density, (2) mild density variation--p = 1 + 100sin 27rx sin 2 ry, (3) extreme density

variation--p = 1 + 100000 sin 2 rx sin 2 Try, (4) discontinuous jump in density--p = 1

inside a radius 0.1 circle centered at (0.4, 0.4), p = 10001 elsewhere, (5) constant

density adaptive--the square from 0.25 to 0.75 in x and y is refined by a factor of

four from the base grid.

Cases (1) and (2) are smooth, so the multigrid scheme converges rapidly and gives

unambiguous second-order convergence. Cases (3) and (4) are more difficult, but the

schemeis still clearly better than first order. In the adaptivecase(5) the errors are
concentratedalong the coarse-finegrid interface,wherethe discretization of DG is

only first-order accurate. Convergence is still second-order in the 2-norm, but may

be slightly degraded in the c_-norm. Note that this example is not representative

of the intended use of the adaptive method. In normal operation the interfaces are

well-separated from complicated regions of the flow field, which dominate the error

behavior of the scheme. Slower convergence for the adaptive scheme appears to be

due the mismatch between coarse grid stencils and the residuals computed at the

interface. Relaxation at interfaces and/or closer integration of the multigrid and

multilevel iterations might yield a faster algorithm.

Quantitative analysis of the the flow solver as a whole is beyond the scope of this

paper. Our remaining two examples are intended mainly as illustrations, to demon-

strate the power of the algorithm for modeling unsteady flow fields with finely detailed

structure. In Figure 3 we show an image from a 3D variable-density calculation set

up and run by Dan Marcus. A bubble of helium was initially started at rest near

the bottom of the domain. The ambient fluid is air, giving a density ratio of 7.25.

The calculation was performed on a 64x64x128 grid occupying one quarter of the

volume shown--this was filled out to 1283 for rendering by reflection through the two

symmetry planes. At the time of the picture the bubble has risen and developed into

a torus, with more complicated flow patterns visible in the outer mixed region. We

do not claim that this calculation accurately models a turbulent flow field. However,

a more detailed examination of transition to turbulence, using a projection method

similar to the one presented here, can be found in [6].

Figure 4 illustrates the adaptive algorithm. A 64x64 base grid is refined twice,

by a factor of four each time, so the finest level has resolution equivalent to a single

1024x1024 grid. Every 10 time steps grids are re-allocated according to a procedure

based on second derivatives of the velocity field. In the initial conditions, four patches

of vorticity with radii 0.025 are placed in the unit square at (0.5, 0.5), (0.5, 0.575),

and the two 120 ° rotations of this position. Each patch has uniform vorticity except

for a linear ramp 3/256 wide down to zero vorticity at the edge--the radius of the

patch is the distance from the center to the halfway point of the ramp. The initial

velocity field is obtained by solving for the stream function associated with the given

vorticity field. This is identical to the projection calculation, except that the stream

function satisfies a Dirichlet boundary condition. Note how well the Godunov advec-

tion scheme preserves fine details of the flow field, even in the highly stretched regions

near the vortex core.

CONCLUSIONS AND FUTURE PLANS

Centered difference stencils are the simplest choice for implementing the discrete

divergence and gradient, subject to the requirement that velocity components must

all be defined at the same points. The decoupled projection stencils arising from this

choice require various contortions in the solution algorithm, which raises doubts as to

253

Figure 3: Volume-renderingof a.helium 1)ubblerising through air. The central part
of the bubble has taken on a simple toroidal shape,but the outlying mixed regions
showmorecomplicatedflow patterns.

254

Figure 4: Adaptive simulation of a four-way vortex merger problem, showing contours
of vorticity.

the practical utility of tile results thus obtained. Despite tile unusua.l behavior of the

projection, however, the difficulties have been overcome and the method successfully

models a variety of incompressible flow problems.

It seems likely that some flow problems will not be suitable fox' this type of algo-

rithm. Though the projection does not directly cause high-wavenumber instabilities,

neither does it do anything to suppress them when they are excited by other parts of

a flow solver. Lai, for e×ample, reports having difficulty using this type of projection

255

for certain combustion problems [14]. We have seen stability problems ourselves in an

adaptive version of the algorithm of [4], where a staggered-mesh projection is applied

to the edge velocities computed in the Godunov predictor.

While we believe the decoupled method is a worthy contender, these difficulties

beg for comparative studies with other types of projections. One alternative is the

regularization given by Strikwerda [16]. Though coupled, however, the stencils derived

in this work are both large and asymmetrical. A newer approach is that of Almgren,

Bell and Szymczak in [2], which is coupled and symmetrical but not quite idempotent.

We have recently completed an adaptive version of this projection, early results from

which seem quite promising.

ACKNOWLEDGEMENTS

The author wishes to thank John Bell for his help with the design of the Godunov

module, Dan Simkins for writing the streamlined Godunov integrator for 3D, and

Dan Marcus for supplying the data from his helium bubble calculation.

REFERENCES

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multi-grid method

for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci.

Star. Comput., 2:430-454, 1981.

[2] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the in-

compressible Navier-Stokes equations based on an approximate projection. Tech-

nical Report UCRL-JC-112842, LLNL, January 1993.

[3] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the

incompressible Navier-Stokes equations. J. ('omput. Phy.% 85:257-283, Decem-

ber 1989.

[4] J. B. Bell, P. Colella, and L. H. Howell. An efficient second-order projection

method for viscous incompressible flow. In lOtl_ AL4A Computational Fluid

Dy,amics Co',fcrcnc(, Honolulu, June 24-27, 1991.

[5] J. B. Bell and D. L. Marcus. A second-order projection method for variable-

density flows. J. ('ompul. Phy.% 101:334-348, 1992.

[6] J. B. Bell and D. L. Marcus. Vorticity intensification and transition to turbulence
in the three-dimensional Euler equations. Corn mu,. 3l_Itb. PIJg._., 147:371-394,

1992.

[7] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-

namics. J. Compttt. Phy._., 82:64-84, 1989.

256

[8] W. L. Briggs..4 M,ItigJ'id Tt_toricd. SIAM, Philadelphia, 1987.

[9] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp,t.,

22:742-762, October 1968.

[10] A. J. Chorin. On the convergence of discrete approximations to the Navier-Stokes

equations. Math. ('ompul., 23:341-353, 1969.

[11] P. Colella. A multidimensional second order Godunov scheme for conservation

laws. J. Comput. Phy._., 87:171-200, 1990.

[12] G. H. Golub and C. F. Van Loan. Matri.r Computations. Johns Hopkins Univer-

sity Press, Baltimore, 1983.

[13] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous

incompressible flow of fluids with free surfaces. Physics of Fluids, 8:2182-2189,
1965.

[14] M. F. Lal. A P_vjectio, Mdhod for Reacting Flow in the Zero Mach Number

Limit. PhD thesis, University of California at Berkeley, 1993.

[15] S. F. McCormick. tlhtltile_,el Adaptive Methods for Partial Differential Equations.

SIAM, Philadelphia, 1989.

[16] J. C. Strikwerda. Finite difference methods for the Stokes and Navier-Stokes

equations. SL4M J. Sci. Slat. Comput., 5:56-67, 1984.

[17] P. Wesseling. An [nl_vduction to MuIligrid :'lI(thods. Wiley, New York, 1992.

257

N94.
WAVELET MULTIRESOLUTION ANALYSES ADAPTED FOR

THE FAST SOLUTION OF BOUNDARY VALUE

ORDINARY DIFFERENTIAL EQUATIONS

BjSrn Jawerth

University of South Carolina

Columbia, SC

Wim Sweldens

Katholieke Universteit Leuven, Belgium

University of South Carolina

SUMMARY

We present ideas on how to use wavelets in the solution of boundary value ordinary differential

equations. Rather than using classical wavelets, we adapt their construction so that they become

(bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a

Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can

construct an (.9(N) algorithm for various constant and variable coefficient operators.

INTRODUCTION

The purpose of this paper is to use wavelets in the solution of certain linear ordinary differential
equations of the form

Lu(x) = f(x) for xe[0,1], where
m

L = Ead(x) DJ'
j=0

and with appropriate boundary conditions on u(x) for x = 0, 1.

Currently there exist two major solution techniques. First, if the coefficients aj(x) of the

operator are constants, then the Fourier transform is well suited for solving these equations. The

underlying reason is that the complex exponentials are eigenfunctions of a constant coefficient

operator and they form an orthogonal system. As a result the operator becomes diagonal in the

*The first author is partially supported by DARPA Grant AFOSR 89-0455 and ONR Grant N00014-90-J-1343, the

second author is Research Assistant of the National Fund of Scientific Research Belgium and partially supported by
ONR Grant N00014-90-J-1343.

PRte,_DiNEI PAGE BLANK NOT FILMED
259

Fourier basis and can thus trivially be inverted. The numerical algorithm then boils down to

calculating the discrete Fourier transform of the right hand side, dividing each coefficient by its

corresponding entry in a diagonal matrix and finally taking the inverse Fourier transform to obtain

the solution. This can be done quickly using the fast Fourier transform which has a complexity of

N log N, where N is the number of unknowns in the discretization.
If the coefficients are not constant one typically uses finite element or finite difference methods to

discretize the problem. We focus here on finite element methods. Define the op_ r,l,,r h_,(r p_vduct

associated with an operator L by

((u,v)> = <nu, v).

A weak solution u can be found with a Petrov-Galerkin method, i.e. consider two spaces ,_ and S*

and look for a solution u E ,_ such that

((u,v>) = (f,v),

for all v in _q*. If ,.q and S* are finite dimensional spaces with the same dimension, this leads to a

linear system of equations. The matrix of this system, also referred to as the ._l(.fft_(.__.s_,<_frix, has as

elements the operator inner products of the basis functions of S and S _.

Traditionally one uses very local finite elements such that the stiffness matrix has a banded

structure. The linear system can then be solved efficiently with an iterative method. These classical

finite elements however have the disadvantage that the stiffness matrix becomes ill conditioned as

the problem size grows. This slows down the convergence speed of the iterative algorithm

dramatically. It is well understood by now that this can be solved with multiresolution techniques

such as multigrid or hierarchical basis functions [1, 2]. Multiresolution finite element bases can

provide preconditioners which result in a uniformly bounded condition number, see e.g. [3, 4, 5].

The convergence of the linear system is then independent of the problem size.

The research presented here is motived by the question of how good wavelets are for the solution

of ordinary differential equations. We know that there are basically four main properties of

wavelets; namely, they provide a multiresolution basis for a wide variety of function spaces, they are

local in both space and frequency, they satisfy (bi)orthogonality conditions and fast transform

algorithms are available. Because of these properties, wavelets have already proven to be a valuable

substitute for the Fourier transform in many applications.

One possible idea, as proposed by several researchers, is to use wavelets as basis functions in a

Galerkin method. This has proven to work and results in a linear system that is sparse because of

the compact support of the wavelets, and that, after preconditioning, has a condition number

independent of problem size because of the multiresolution structure. However, in this setting the

wavelets do not provide significantly better results than more general multiresolution techniques

(cfr. supra) and in fact one of their major properties, namely their (bi)orthogonality, is not

exploited at all.

Three questions are addressed in this research. The first, how can one make use of the

(bi)orthogonality property of the wavelets? The second, which operators can be diagonalized by

wavelets? The last, are fast algorithms available and what is their complexity?

260

PRELIMINARIES

Notation and definitions

Much of the notation will be presented as we go along. Here we just note that the inner product

of two square integrable functions f, g E L 2 (IR) is defined by

(f,g) = f(x)g(x)dx,
,2C

and that the Fourier transform of a function f is defined as

-gx,= :(x) e-i x ex.

We say that a function w is an L-spline if

L*Lw = 0 and wEC 2m-2,

where L" is the adjoint of L, a linear differential operator of order m. This definition leads to the

classical piecewise polynomial splines in case L = D TM .

Multiresolution analysis

We give a brief review of wavelets and multiresolution analysis. For more information one can

consult [6, 7, 8, 9]. A multiresoluHon analy.sis of L2(IR) is defined as a set of closed subspaces Vj,

with j c 2g, that exhibit the following properties:

1. Vj C Vj+I,

2. v(x) • V3 ¢* v(2x) • V_+I and v(x) • Vo ** v(x + 1) e V0,

3. U Vj is dense inL2(IR) and A V_={0},
j=-,x, i=-'=':,

4. A ._calin9 .f,,,clion ¢(x) • V0 exists such that the set of functions {¢j,l(x) I l • _}, with

Cj,l(z) = v_ ¢(2Jx - l), is a Riesz basis of Yj.

As a result there is a sequence {hk] k • Z_} such that the scaling function satisfies a vqfincmenl

cqu a 1io.

¢(x) = 2 - k).
k

(1)

261

Define Wj now as a complementary space of Vj in V3-+1, such that Vj+I = Vj @ Wj (@ stands for

direct sum) and, consequently,

0 Wj = L2(IR).

Note that this definition of Wj as a complementary space is non unique.

A function ¢(x) is a wa,,_l(t if the set of functions {¢(x - l) [l e _'} is a Riesz basis of W0. The

set of wavelet functions {¢j,t(x)] l,j C z_} is then a mesz basis of L2(IR). Since the wavelet is an

element of V_, it too satisfies a refinement relation,

¢(x) = 2_ g_¢(2x - k). (2)
k

There are dual functions Cj,l(x) = v_¢(2Jx - l) and Cj,,(x) = v_(p(2Jx - l) that exist so that the

projection operators Pj and Qj onto V3 and W3, respectively, are given by

Pjf(x) = E (f,¢j,t)¢j,t(x) and Qjf(x) = _ (f,¢j,,)¢j,,(x).
l l

The basis functions and dual functions are biorthogonal,

(¢j.,, Sj.,) = _,_,, and (Cj,,,_j,,,,) = _-j,_,_,,. (3)

if the basis functions are orthogonal, they coincide with the dual functions and the projections are

orthogonal.

The dual scaling function and wavelet satisfy

¢(x) = 2Eh_¢(2_-k), ¢(x) = 2E0_¢(2_-k), (4)
k k

and

l l
: : : : : :: : :

Taking the Fourier transform of the refinement equations (1) and (2) yieIds

)(w) = h(w/2) q(w/2) with h(w) = _ hk e -ik_
k

(5)

and

_b(w) = g(w/2)¢(w/2), with g!w)= Egkg::ik__

Here h(w) and g(w) are 27r-periodic functions that correspond to discrete filters. Similar definitions

and equations hold for the dual functions. A necessary condition for biorthogonality is then

Vw e IR • _(w)rnt(w) --= 1,

where

m(w) = [h(w) h(,w + rr)]

and similarly for _(w). The existence of the dual filters is guaranteed by the following lemma:

262

Lemma 1 Th, ._paec qcnrral, d bg tt_ _l o ffttnctio,_.; {_bj,t] l E ,_} co,nl)l,m_ ,,I., Vj in Vj+I if and

o,du _f6(w) = ,k Ira(w) ,lo_.._,tot ,.a,i._h.

The following statements are now equivalent :

• The dual wavelet has M vanishing moments.

• Any polynomial with degree less than M can be written as a linear combination of the

functions Cj,_(x) with l E z_.

• If f E C M, then the error of the approximation Ill - PJfH decays as (D(h M) with h = 2-J.

These statements are also equivalent with the Strang-Fix condition [10].

The fast wavelet transform

Since Vj is equal to Vj_i @ Wj_l, a function v_ 6 V_- can be written uniquely as the sum of a

function vj-1 E Vj__ and a function wj-i 6 Wj-i:

k

n y_ Vj_I,I Cj_l,l(X) ___ y_ Uj-l,l Cj-l,l(X) •
! l

There is a one-to-one relationship between the coefficients in the different representations. The

decomposition formulae can be found using (4):

vj-l,_ ---- V_ _ hk-2, uj,k, and #j-i,t = V_ Y]_ 9k-2, v'j,k.
k k

The reconstruction step involves calculating the uj, k from the vj-l,t and the #j-l,l. Using (5) we have

l t

When apphed recursively, these formulae define a transformation, the fast u'avelet tran.sform [8, 11].

The decomposition step consists of applying a low-pass (h) and a band-pass (_) filter followed by

downsarnpling (i.e. retaining only the even index samples). The reconstruction consists of

upsamphng (i.e. adding a zero between every two samples) followed by filtering and addition. Note

that the filter coefficients of the fast wavelet transform are given by the coefficients of the

refinement equations.

There are many constructions of wavelets. Here we shall only consider compactly supported

wavelets as in [12, 13]. In this case the filters used in the fast Wavelet transform are finite impulse

response filters and a fast accurate implementation is assured.

263

General idea

We shall assume that L is self-adjoint and positive definite and, in particular, we can write

L =V'E

where V* is the adjoint of V. We call V the ._q_lar_ root opcrator of L. Suppose that {_j,t} and

{_,l}, for an appropriate range of indices, are bases for S and S* respectively. The entries of the

stiffness matrix are then given by

((_j,t,_;,,1,)) = (L_j,t,_;,,_,)= (V_j,,,V_,,t,).

Now, the idea is to let

_j,t = V-lCj,l and _j,l = V-lCJ,l,

where ¢ and ¢ are the wavelets of a classical multiresolution analysis. Because of the

biorthogonality (3), the stiffness matrix becomes a diagonal matrix which can trivially be inverted.

This avoids the use of an iterative algorithm. We will call the • and _* functions the opera,or

wavclct.s and the _b functions the original wav__let._. The operator wavelets are biorthogonal with

respect to the operator inner product, a property we refer to as operator biorthogonal.

This idea can be powerful, but there are a few problems. First of all one has to check whether

the operator wavelets still provide an multiresolution analysis where the successive approximations

to a general function converge sufficiently fast (cfr the Strang-Fix condition). Secondly one has to
construct a fast wavelet transform for this operator multiresolution analysis. We want operator

wavelets to be compactly supported and to be able to construct compactly supported operator

scaling functions ¢I'j,l. We will see that the latter is not as simple as just applying V -I to the

original scaling functions.

The analysis is relatively straightforward for simple constant coefficient operators such as the

Laplace and polyharmonic operator. For more general constant coefficient operators, we will show

that one needs to modify the construction of the original wavelets for the operator wavelets to

satisfy all the desired properties. We will discuss the Helmholz operator as a typical example. At

the end of the paper we shall consider a variable coefficient operator.

A similar idea was described in [14, 15]. However there only the operator wavelets of different

levels are operator orthogonal and not the ones from the same level. As a result, one does not

obtain a full diagonalization, but rather a decoupling of equations corresponding to different levels.

Our idea is different from the technique presented in [16]. There wavelets are used to efficiently

compute the inverse of the matrix that comes from a finite difference discretization. It is also shown

that the wavelets provide a diagonal preconditioner which yields uniformly bounded condition

numbers.

In [17, 18] antiderivates of wavelets are used in a Galerkin method. This parallels our

construction in the case of the Laplace or polyharmonic operator.

264

LAPLACE OPERATOR

The onedimensionalLaplaceoperator and its squareroot are

L = -D 2 and V = D.

The associated opcrafoJ- iT_ncr product is therefore ((u, v)) = (u', v'). Since the action of V -1 is

simply taking the antiderivative here, we define the operator wavelets as

f fq_(x) = ¢(t) dt, and _*(x)= ¢(t) dt.
c_

The operator wavelets are compactly supported because the integral of the original wavelets has to

vanish. Also translation and dilation invariance is preserved, so we define

• ¢,,(x) = _(2Jx- l) and _;,,(x) = _*(2Jx -l).

It is then easy to see that

((k_;,,,_j,,v>) = 21_j_j,_,_v for j,j',l,l'ez_.

This means that the stiffness matrix is diagonal with powers of 2 on its diagonal.

We now need to find an operator scaling function _. The antiderivative of the original scaling

function is not compactly supported and hence not suited. We instead construct the operator

scaling function q_ by taking the convolution of the original scaling function with the indicator

function on [0, 1],

¢ = ¢ * XI0,1l,

and similarly for the dual functions. We will show that these functions indeed generate a

multiresolution analysis. To this end define

V_ = closspan{_j,l[IEz_} and We = closspan{_j,l[lE_}.

We show that the Vj spaces are nested and that Wj complements Vj in V3.+1.
In the Fourier domain we have

1 -- e -i_

-- 1¢(w) and _'(w)= i--_

A simple calculation shows that the operator scaling function satisfies a refinement equation

_(w) = _(w/2) H(w/2) with H(w) -- 1 + e -'_'
2 h(w).

Consequently, the Vj spaces are nested. If we can find a function G such that

=

265

then this implies that Wj is a subset of V_-+I. It is easy to see that this holds with

1

G(w) = 2(1 - e-'_) g(_)

This function is well defined because g(0) = 0.

The space Wj complements Vj in Vj+_ if

A(w) = det a(w) a(w+rr)

does not vanish, see lemma 1. In fact, we readily see that A(w) = 5(w)/4, and this cannot vanish

since ¢ and ¢ generate a multiresolution analysis. The construction of the dual functions _I," and
_* from ¢ and ¢ is competely similar. The coefficients of the trigonometric functions H, H ", G and

G* now define a fast wavelet transform.

Note that there is no reason why the operator scaling functions should be operator biorthogonal

and in fact one can prove that this never happens. Note also that if true, this property would make

the use of wavelets superfluous.

Algorithm

We will describe the algorithm in the case of periodic boundary conditions. This implies that the

basis functions on the interval [0, 1] are just the periodization of the basis functions on the real line.

Let S = V '_ and consider the basis {(I)_,t I 0 <_ l < 2_}. Define vectors b and x such that

bt = (f,(_,l), and u = _x,(I),_,l.
l=0

The Galerkin method with this basis then yields a system

Ax = b with Ak,, = (((_n,,,On,k)).

As we mentioned earlier, the matrix A cannot be diagonal. Also its condition number grows as

0(22'_). Consider now the decomposition

V,_ = Vo @ Wo @ . .. @ W,_-_,

and the corresponding wavelet basis. The space V0 has dimension one and contains constant

functions. We now switch to a one index notation such that the sets

{1,_3,110_<j<n, 0_<1<2 _}

coincide. Define the vectors b and _ such that

and {_kl0_<k<2 _}

2 7_ _

{_l = (f,_) and u = __.
l=0

We know that there exists matrices T and T* such that

_=T_b and x = Ti

266

The matrix T _ corresponds to the fast wavelet transform decomposition with filters H _ and G* and

T corresponds to reconstruction with filters H and G. The complexity of the matrix vector

multiplication is O(N), N ----2 '_. In the wavelet basis the system becomes

A_ = b with fi_ = T'AT and -4k,t =- ((_,t,_n,k))-

Since A is diagonal, it can be trivially inverted and the solution is then given by

x = TA-1T*b.

This means that one has to calculate the wavelet decomposition of the right hand side, divide each

coefficient by its corresponding diagonal element and reconstruct to find the solution. The

complexity is O(N).

The constant basis function of V0 has a zero as diagonal element and its coefficient is thus

undetermined. Note that this leads to an inconsistency if the integral of f does not vanish.

Boundary conditions

Our general idea to deal with boundary conditions is to let the operator wavelets satisfy the

homogeneous boundary conditions and to let the component in the Y_ space satisfy the imposed

boundary conditions. This requires the use of special boundary wavelets as described in [19]. With

only a slight change of basis one can then incorporate Dirichlet, Neumann, mixed and periodic

boundary conditions. The details of this construction go beyond the scope of this paper. We will

describe the construction in some specific cases.

Example

In this section we shall take a look at a simple example, namely the basis we get by starting

from the Haar multiresolution analysis, where

¢ = X[0,1] and ¢(x) -- ¢(2x)-¢(2x-1).

Define the l_,! ./'tl.ctiol_ as

A = X[0,1]*X[0,1I, such that ¢ = A and _(x) = A(2x).

The original wavelets are orthogonal and as a consequence the basis functions and dual functions

coincide.

The operator scaling functions can represent linears which means they satisfy the Stang-Fix

condition with M = 2 and the convergence is of order h 2. One can prove that higher order wavelets

with more vanishing moments (M) will in general not yield faster convergence because the solution

u is not smooth enough. The underlying reason is that the solution u belongs to the Sobolev space

W2. One can get faster convergence only by imposing extra regularity conditions on the right hand

side. So in a way this basis seems to be the most natural one to work with. Note that these

piecewise linear basis functions are local solutions of the homogeneous equation such that the

267

Figure 1: Basis for Dirichlet problem. Figure 2: Basis for Neumann problem.

operator scaling functions and wavelets are V-splines. This basis also coincides with Yserentant's

hierarchical basis.

Figure 1 shows the basis functions in the case of Dirichlet boundary conditions and n : 3. The

left part are the bases for the spaces V0 up to V3 while the right part are the bases for W0 up to W2,

which provide the diagonalization. The coefficients of the two functions in the V0 space are

determined by the boundary conditions. The fast wavelet transform differs from the periodic

algorithm here in the sense that different coefficients are used for the wavelets at the boundary.

Note the "half hat" functions here. The basis in case of the Neumann problem is shown in figure 2.

The boundary conditions are handled by the two functions in the V1 space. Again the coefficient of

the constant is undetermined. The algorithm leads to an inconsistency in case the integral of f is

not equal to u'(1) - u'(0). Note that in both cases the operator wavelets satisfy the homogeneous

boundary conditions.

MORE GENERAL CONSTANT COEFFICIENT OPERATORS

The polyhaxmonic operator

The polyharmonic equation is defined as

_u (2m) = f,

and the square root operator is now V = Dm. The operator scaling function ¢ is now m times the

convolution of the original scaling function ¢ with the box function and the operator wavelet • is

m times the antiderivative of the original wavelet ¢. In order to get a compactly supported wavelet,

the original wavelet now needs to have at least m vanishing moments, a property which can be

satisfied by all known wavelet families. The construction and algorithm are then completely similar

268

0.9

0.8

0.7

0.6

0.5

0.4

0,3

0.2

0.I

0.2 0.4 0.6 0.8 I 1.2 1,4 1.6 1.8

Figure 3: The refinement relation for the piecewise exponentials.

to the case of the Laplace operator.

The Helmholz operator

The general definition of the one dimensional Helmholz operator is:

L=-D 2+k 2 such that V-D÷k.

Here we shall assume that k = 1 which can always be obtained from a simple transformation.

Observe that V = D + I = e-*De* and thus V -1 = e-*D -1 e _. One easily verifies that applying

V -I to a wavelet will not necessarily yield a compactly supported function since e_¢3,1 in general

does not have a vanishing integral. Therefore we let _j,t = V-_e-*¢3: = e-XD-lCj,l. If ¢3,t has a

vanishing integral, then _j,l is compactly supported.

In order to diagonalize the stiffness matrix, the original wavelets now need to be orthogonal with

respect to a weighted inner product with weight function e -2x because

((k_j,,,_,,_,)) -= J- e-2X¢_:(x)¢a,:,(x)dx.

Finding such wavelets is a hard problem to solve in general. Inspired by the Haar basis, we

construct a solution where the orthogonality of the wavelets on each level immediately follows from

their disjoint support, by letting suppCj,_ = [2-i/, 2-J(/+ 1)]. To get orthogonality between the

different levels, we need that V3 is orthogonal to Wi, for j' >1 j or

+× Cj,,(x)¢j,:,(x)dx = 0 for j' >t j.
e-2x

,x,

We now let the scaling function coincide with e2. on the support of the finer scale wavelets,

Cj,l 2xe Xj,l,

269

where Xj,l is the indicator function on the interval [2-Jl, 2-J(l + 1)], normalized such that the

integral of the scaling functions is a constant. As in the Haar case we choose the wavelets as

Cj,1 = ¢j+1,2l - ¢j+1,21+1,

so that they have a vanishing integral. The orthogonality between levels now follows from the fact

that the scaling functions coincide with e 2x on the support of the finer scale wavelets, and from the

vanishing integral of the wavelets

e-2X Cj,l(x) _b3, l,(x) dx = Xj,,(x)¢j,,,,(x)dx = (x)dx = O.

One can see that the operator wavelets are now piecewise hyperbolic functions (piecewise

combinations of ex and e-X). The scaling functions are chosen as

--x --1

(I)j,l = e D (¢j,l-¢j,_+l) so that _j,l = ePj+l,21-

With the right normalization, one gets

sinh(x-/2-J)

= sinh((/+ 2)2-J- x)
sinh(2-J)

0

for z • [12-J,(l + 1)2-J1

for x • [(l + 1)2 -j, (l + 2)2 -j]

elsewhere.

The operator scaling functions on one level are translates of each other but the ones on different

levels are no longer dilates of each other. They are supported on exactly the same sets as the ones in

figure 1 and they roughly look similar. The operator scaling functions satisfy a refinement relation

2

j,l = EHk j+l,21+k

k=O

with

H_ : H_--sinh(2-J:l)/sinh(2 -j) and H_ = 1.

Figure 3 shows the refinement relation for the scaling functions. The 3 finer scale functions are not

the dilates of the coarse scale one but they still add up to it.

The Helmholz operator in this basis of hyperbolic wavelets again is diagonal and the algorithm is

completely similar to the Laplace case. The only difference in implementation is that the filter

coefficients H_ used in the fast wavelet transform now depend on the level.

Note that these functions again are V-splines and, in a way, are the most natural to work with.

Also note that

lim Cj,0(2-Jx) = A(x).
j-- ,.-K

Despite the fact that the Strang-Fix conditions are not satisfied, one can prove that the

convergence is still of order h 2.

So we can conclude that a wavelet transform can diagonalize constant coefficient operators

similar to the Fourier transform. The resulting algorithm is a little faster (O(N) instead of

270

(9(N log N)). This gain in speed is a consequence of the subsampling of the coarser levels in the

wavelet transform (the ones that correspond to the low frequency components of the solution)

which is not present in the Fourier transform. Also boundary conditions are taken care of more

easily than in the Fourier case.

VARIABLE COEFFICIENTS

Naturally, the next question is how to use wavelets for variable coefficient operators. The

underlying reason why wavelets can diagonalize constant coefficient operators is their locality in the

frequency domain. We want to understand if we can exploit the localization in space to diagonalize

variable coefficient operators. The answer is (perhaps quite surprisingly) yes and this really justifies

the use of wavelets for differential equations. No other technique (to our knowledge) has been able

to accomplish this.

We take a closer look at the following operator

L = -Dp2(x)D,

where p is sufficiently smooth and positive. The square root is now V = pD and V -1 = D -_ 1/p.

The rest of the analysis is very similar to the case of the Helmholz operator. Applying V -1 directly

to a wavelet does not yield a compactly supported function. We therefore take _I'j,l -- V -1 pCj,,

which implies that the wavelets need to be (bi)orthogonal with respect to a weighted inner product

with p2 as weight function. We use the same trick as for the Helmholz equation to construct such

functions. This means that we let the scaling functions Cj,_ coincide with 1/p 2 on the dyadic

interval [2-J/, 2-J(/+ 1)] and normalize them such that they have a constant integral. We then take

the wavelets Cj,l to be equal to ¢3+1,21 - ¢j+1,2l+1 so they have a vanishing integral and the operator

wavelets are compactly supported. The operator wavelets are now piecewise functions that locally

look like AP + B where P is the antiderivative of 1/p 2 and again are V-splines. Their support also

coincides with the support of the functions of figure 1, and since p is smooth they will converge to

hat functions as the level goes to infinity. The operator wavelets are neither dilates nor translates of

one function, since their behavior locally depends on p. This is not a problem because they still

generate a multiresolution analysis and satisfy refinement relations. The coefficients in the fast

wavelet transform are now different everywhere and they depend in a very simple way on the Haar

wavelet transform of 1/p 2. The entries of the diagonal stiffness matrix can be calculated from the

wavelet transform of 1/p 2. The algorithm is completely similar to previous cases and is of order N.

Boundary conditions are as easy to handle as in the case of the Laplace operator. Note that the

operator scaling functions do not satisfy the Strang-Fix conditions. It is however again possible to

prove that the method has a convergence of order h 2. As mentioned earlier, higher convergence

orders can not be obtained in general.

NUMERICAL EXAMPLE

We solve the equation

-De _ Du(x) = ex2 (sin(x)(3x 2- 2) + cos(x)(2x- 2xa))/x a, with u(O)=l and u(1)=sin(1),

271

l L_, error

1 1.22e-02

2 3.37e-03

3 8.66e-04

4 2.18e-04

5 5.45e-05

6 1.36e-05

7 3.41e-06

8 8.52e-07

9 2.13e-07

such that the exact solution is given by u(x) = sin(x)/x. The L_ error of the numerically

computed solution is a function of the number of levels (l) shown in the above table. Each time

the number of levels is increased the error is divided almost exactly by a factor of 4, which agrees

with the O(h 2) convergence.

CONCLUSION

In this paper we showed how wavelets can be adapted to be useful in the solution of differential

equations. Like the Fourier transform, wavelets can diagonalize constant coefficient operators. The

resulting algorithm is slightly faster. The main result however is that even non-constant coefficient

operators can be diagonalized with the right choice of basis which evidently yields a much faster

algorithm than more classical iterative methods.

This technique can also be applied to the solution of implicit time stepping discretizations of

equations of the form Ou/Ot = Lu + f even when L is non-linear. Future research includes the

study of non self adjoint operators where a splitting L = VV" is needed and the study of the

possible generalization of these ideas to partial differential equations.

ACKNOWLEDGEMENT

We would like to thank Ilona Weinreich for providing unpublished preprints, Marius Mitrea and

Gunnar Peters for several interesting discussions and Van Henson for valuable comments on the

paper.

REFERENCES

[1] W. Hackbusch.._f,lli-Grid Methods and Application._. Springer-Verlag, Berlin, 1985.

[2] H. Yserentant. On the multi-level splitting of finite element spaces. :\h,ncr. Math., 49:379-412,

1986.

[3] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp.,

55:1-22, 1990.

272

[4] W. Dahmen and A. Kunoth. Multilevel preconditioning. Numcr. Math., 63(2):315-344, 1992.

[5] P. Oswald. On a hierarchical basis multilevel method with nonconforming P1 elements.

Xumcr. :ll, fl_., 62:189-212, 1992.

[6] C. K. Chui...i, Inh'oduction to IV_I_'H_4._. Academic Press, 1992.

[7] I. Daubechies. T_n Lectures oi7 I4)lt,_Ict.,:. Number 61 in CBMS-NSF Series in Applied

Mathematics. SIAM Publications, Philadelphia, 1992.

[8] S. G. Mallat. Multifrequeney channel decompositions of images and wavelet models. IEEE

Tral_.s. on Acoust. Signal Speech Process., 37(12):2091-2110, 1989.

[9] Y. Meyer. Ondehttes et Op(rateurs I. 01td_h:tt_.s. Hermann, Paris, 1990.

[10] G. Strang and G. Fix. A Fourier analysis of the finite element variational method. In

Cot_sh'uctive Aspects of Functional Analysis, Rome, 1973. Edizione Cremonese.

[11] S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L 2 (IR). Tmt_s.

Amer. Math. Soc., 315(1):69-87, 1989.

[12] A. Cohen, I. Daubechies, and J. Feauveau, Bi-orthogonal bases of compactly supported

wavelets. To appear in Comm. Pure and Appl. Math.

[13] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure and Appl.

Math., 41:909-996, 1988.

[14] S. Dahlke and I. Weinreieh. Wavelet bases adapted to pseudo-differential operators. Technical

report, RWTH Aachen, 1992.

[15] S. Dahlke and I. Weinreieh. Wavelet-Galerkin-methods: An adapted biorthogonal wavelet

basis. Constt'uctive approximation, 9(2):237-262, 1993.

[16] G. Beylkin. On wavelet-based algorithms for solving differential equations. Preprint University

of Colorado at Boulder, ftp from newton.colorado.edu.

[17] R. A. Lorentz and W. R. Madyeh. Spline wavelets for ordinary differential equations. Preprint

Geselschaft fiir Mathematik und Datenverarbeitung, St. Augustin, Germany, 1990.

[18] J.-C. Xu and W.-C. Shann. Galerkin-wavelet methods for two-point boundary value problems.

.\:um_r. Math., 63(1):123-142, 1992.

[19] L. Andersson, N. Hall, B. Jawerth, and G. Peters. Wavelets on closed subseets of the real line.

In L. L Schumacher and G. Webb, editors, Topie._ ilt lh_ Th_ot'y attd Applications of I.V_,Het.,.

Academic Press. To be published.

273

A COMPARISON OF LOCALLY ADAPTIVE MULTIGRID METHOD_:

L.D.C., F.A.C, AND F.I.C, N 9 4 -___ _ _ 2

Khodor Khadra

Moddlisation Avanc6e des Syst_mes Thermiques et Ecoulements R6els

and Centre de Recherche en Math6matiques de Bordeaux

Universit6 Bordeaux I, U.A.C.N.R.S. n" 226

351, cours de la Lib6ration, 33405 Talence Cedex - France

Philippe Angot

Institut de Mdcanique Statistique de la Turbulence

Universit6 Aix-Marseille II, U.M.C.N.R.S. n" 33

12, avenue du G6n6ral Leclerc, 13003 Marseille - France

Jean-Paul Caltagirone

Mod61isation Avanc6e des Systbmes Thermiques et Ecoulements R6els

E.N.S.C.P.B., Universit6 Bordeaux I

351, cours de la Lib6ration, 33405 Talence Cedex - France

SUMMARY

This study is devoted to a comparative analysis of three "Adaptive ZOOM"

(ZOom Overlapping Multi-level) methods based on similar concepts of

hierarchical multigrid local refinement : L.D.C. (Local Defect Correction),

F.A.C. (Fast Adaptive Composite), and F.I.C. (Flux Interface Correction),

which we proposed recently. These methods are tested on two examples of a

bidimensional elliptic problem. We compare, for V-cycle procedures, the

asymptotic evolution of the global error evaluated by discrete norms, the

corresponding local errors, and the convergence rates of these algorithms.

INTRODUCTION

The need for local resolution in physical models occurs frequently in

practice. Special local features of the operator coefficients, source terms,

and boundary conditions can demand resolution in restricted regions of the

domain that is much finer than the required global resolution. The muhigrid

methods with local mesh refinement provide one solution method to achieve

efficient local resolution by solving problems on various locally nested

PRKCEDtNG PAGE BLANK NOT FILMED
PAGE TENTIONALLYBLANK

275

grids, and by using these grids as a basis for fast solution and correction on

the global basic grid of the calculation domain. Different techniques have

been proposed in the literature, such as the pioneering works [1,2,3,4,5].

Therefore, the concept of "Computational Adaptive Zoom" in the context of

a "Graphical and Computational Architecture" has been introduced in the field

of numerical simulation in order to take the best advantage of the new

capabilities of high performance computer architectures [6]. It can be viewed

as a generation made automatically (i.e. in an adaptive way) or not, of some

multilevel hierarchical local nested zoom grids (ZG), overlapped all over the

global basic grid (BG). These grids may move all over the entire computation

domain _ during the solution phase. This concept is supposed to allow both

local refinement and global correction of the basic grid solution by a

successive transfer of information between the connected grids (BG) and (ZG).

So it is well adapted to a graphical vision of Zoom in terms of the creation

of local graphical windows where it is needed in the problem (strong

gradients, discontinuities, singularities), but in an active sense, i.e.,

the basic grid solution is modified and improved as the computing is

performed. This has involved us in the creation of an original engineering

software package called "AQUILON", still currently in development [6].

In addition, this strategy offers other interests. The goal is to combine

the best features of both multigrid techniques and domain decomposition

methods (in the case of overlapping grids) to provide an acceleration of the

convergence rate and a good suitability for implementation on parallel

computers, thus reducing the ellapse time. Moreover, another advantage is the

possibilty to solve different differential problems on the grids (BG) and

(ZG), which allows us to optimize both the physical and the numerical model.

This can be particularly interesting for the approach of solving problems by

"imbedding inside fictitious domains" associated with appropriate "control

terms" for expressing the boundary conditions, as proposed in [6]. It is also

possible to adopt different kinds of discretization on each grid. Thereby, the

multigrid zoom methods share with the domain decomposition techniques the

opportunity for obtaining precise solutions by combining solutions to problems

posed on physical subdomains, or, more generally, by combining solutions to

appropriately constructed continuous and discrete boundary value sub-problems.

From the numerical point of view, the strategy adopted enables us to work

only on structured and uniform meshes for each grid separately, on which a

moderate number of degrees of freedom is required. On each grid, a "simple and

276

inexpensive" discretization is performed, leading to the same simple form of

sparse pattern matrices (e.g. 2D block-tridiagonal). We aim at avoiding

solving problems on unstructured or nonuniform composite meshes, which tends

to introduce inaccuracies in the discretization, slowness in the solvers, and

being surely more expensive in terms of implementation, data structures

storage and CPU time. Our choice is expected to be relatively good in terms of

duality quality/cost of computation for a lot of cases of moderate complexity.

MULTIGRID ZOOM ALGORITHMS

Different ZOOM algorithms will be examined and compared. We consider

first the L.D.C. (Local Defect Correction) algorithm proposed by Hackbush [1];

we choose for the restriction operator a 2D bilinear interpolation one of type

"full weighting control volume". The second one belongs to the class of F.A.C.

(Fast Adaptive Composite Grid) methods from McCormick [5], for which the

analogy with the B.E.P.S. method [4] can be noticed. We use here the "delayed

correction" version of F.A.C. Only the third one, the F.I.C. (Flux Interface

Correction) algorithm that we proposed more recently [7], will be briefly

described hereafter.

All these Multigrid Zoom Algorithms are based on the same general

principle : a successive transfer of information level by level, leading to

the global correction of the initial discrete solution on each grid, and thus

on the global basic grid (BG). The multilevel implementation is made in a

recursive way as in the usual multigrid techniques (V-Cycles, W-Cycles, etc .)

[1,3]. The resolution on each grid may be performed "exactly" or by using an

inexact solve (e.g. a few iterations of a smoothing procedure).

Notations and Definitions

Consider the following second order non-linear elliptic boundary value

problem defined on f2 a bounded, open domain in _d, for d = 2 or 3 :

(_,) _ L(u)- div(q_(u)) + G(u) = f(x) x _ f_ (1)

well-posed boundary conditions on F = Of_ symbolically called by (BC)

The equation (1) L(u) - f is so expressed by splitting the nonlinear

operator L(u) in the divergent part where tp(u) has the physical meaning of the

flux density of the solution u= u(x) and the nonconservative one G = G(u). The

relation between the solution u and the flux tp can take the general vector

277

form q0(u) = F(u) in many systems of conservation laws, but applications will

concern an advection-diffusion equation or a Navier-Stokes problem. For the

experiments here, (P) is a diffusion problem and we have cp(u) = -cr.gradu .

In order not to have too many formal requirements and restrictions, we

assume explicitly only that this equation (1) has at least one isolated

solution u ° in the space L2(f2). All other assumptions are implicitly contained

in the following considerations.

The basic notations will be those classically used in the multigrid

framework [1]. We denote by e the current index of the grid level (0_< e < e),

t = 0 is the level of the global basic grid (BG) which discretizes the entire

calculation domain f2, and e = e* _e0 is the level of the most nested and finest

zoom grid (ZG). Each grid of level e can be characterized by •

I1--1

II---I

I--I

I--I

P--t

____,

I--I

I--I

p--I

I--I

---i--i--!

-----I

I--I

t--I

I--II

theopendomain f_e ={0}

the boundary Fe= Ill} on whichcan be

defined the unit out side normal vector n e

the closure I'$ e = f2 eU F e

the mesh size h e

Each grid of level e is divided into a set of control volumes V
x

associated to the nodes x _ _e We denote by Fe,e+ 1 the interface between two

successive grids of ievel e and e+l and we have Ve, f2 e n Oe+l _ O. The

successive mesh sizes will be taken as he+ 1 = h e / 2r', p _ _. The following

notations will also be used • A e = f2_+ 1 n £2e and _ = _e+l n f2 e .

The transfer operators between the grids e and e+l will be called,

pe+l for therespectively, by R e for the restriction operator and by -e_+1
prolongation operator. For all three algorithms, we have chosen pe+l-t as •

PI +1 • Fe,e+ 1 n I'$ e _ Fe+l\ (Fe+ 1 c_ F)

which is a monodimensional linear interpolation operator defined on the

interface of the grids e and e+l. Each value ue+ 1 at a node y _ Fe+l',,(re+ln F)

on the interface is obtained by a linear interpolation of the values u e at the

two neighbour nodes x et x' belonging to (Fe,t+ 1 n U e), and thus verifying

U_+l(y) = ue(x) if y = x .

278

If we denote by L e ue = fe the discretized equation of (1) on the grid of

level t , we can define the following discrete boundary value problems on 17 t •

I 1 Lt ue= ft : in f_t }

Lo Uo = fo : in _o

on r e n r
on F (BC) J (_'t) (BC) . to0

o on F e \ (F t ¢_ F) ut = P_-I U&l (2)

k

We denote by u e the discrete solution obtained on the grid I'$e at the k-th

iteration of the. zoom algorithm, and ek = u t - u k the associated discrete

error, where u e is the natural restriction of the exact solution u* of problem

on rzt .
For 0 < e < t', 7(t)will represent the number of iterations of the zoom

algorithm on the grid level t in order to describe a whole cycle • if we have

7(t)=1 (respectively 7(e)=2), 'v'0< t <t*, then V-cycles (respectively W-cycles)

will be described. We have 7(t*) = 1, and 7(0) is the total number of cycles

performed from the basic grid (BG) in order to obtain the so-called

convergence of the zoom algorithm. When t'=l (i.e. for a two-grid algorithm),

only V-cycles are of course carried out. The term "No Zoom" will be used for

the resolution by "an exact solve" of problem (P) on the basic grid (BG) of

mesh size h° (t°=0, k=0). The term "Zoom" will be used to indicate that some

iterations of a multilevel zoom algorithm have been performed: e*_-0, 1<_1(<7(0).

Description of The Multilevel F.I.C. Algorithm

The main idea of the two-grid FIC method for levels t and t+l is to give

the opportunity to apply the local "flux residual" correction due to the whole

patch level t+l, at each node x _ 7["t on the grid level e. This is obtained

through the expression of the local flux balance (i.e. integration) of eq.(1)

over the volume Vx = Vx _ I'St+ 1, between the grid levels t, on one hand, and

t+l on the other hand.

Because of the consistency of the conservative discretization of the

fluxes by the finite volume method, which must be respected on each grid, the

outside normal fluxes of q0(u) through an interface of two neighbour control

volumes are opposite. By giving more importance to the local "flux residual",

that leads to consider for the correction step on the grid level t, the local

flux of the defect only at each node of a boundary zone Ie, e+ 1 defined as the

"flux correction interface". We can choose for Ie,t+l' either the stripe A*=

{w Vx , x _ _X"e = Ft, e+ 1 n _t}, or A- (see further Figure) if we want the

279

boundary bA to correspond to interfaces between control volumes on the grid

level e " we will have V = 1/" in the latter case. We define on the grid level
X X

e, bVx= F x u F r, Vx _ Ie = Ie,e+ 1 n _e , where Fx= bV x n _'_ _: O, or

respectively, F = _V n 8Ae, (rues (F x) = h e).

r

d

X

X

t I t

I1_ +1

. _ IC

2_"N);

.

i_ _+1

We then propose the following restriction operator on the outside normal

flux through the "interface boundary" _'e,_+l = {u F x , x e I_} •

R_+ " _/_,e+l n _e+l _ Ie,e+l

e = 1 [Re+l(_+l(u).n_+l)(X) mes(Fx) _FZe+l(u)'n_+ld 7 'v'x _ Ie,e+ 1 _ _ (3)

We can then define, as in [7], the local "flux residual" correction at

each node x _ I_ = Ie, e+ 1 n f_e on the grid level e by •

6o(,,x)(u) { }re(c,p)(x) = 8(e,x) R_+l((Pe+l(U) .ne+l) . (pe(u).n¢+ 1 (x) (4)

The control parameter e(_,x), which has the dimension of a length, has

already been encountered in order to assign Neumann and Robin (or Fourier)

boundary conditions in the context of "imbedding inside a fictitious domain"

[6]. Its expression is given by •

rues (V)

e(_,x) = (5)
rues (F)

X

A complete calculation, still not published, gives a complex expression

for o3@,x)(u), which is the following one in the case under subject of G -= 0 •

280

co(e,x)(u) _ 1 +

[IF q_(u)'n dTjt

(6)

We can then generate the successive iterates u k by the multilevel FIC

algorithm implemented in a recursive way :

Initialization : compute u °
0 0

u o is obtained by resolution of problem (_o)

Iterations : compute the successive iterates u k
0

for k = 1 to 7(0)do FIC(0)

Composite re-actualization : providing UoT(°) on (BG) by assigning

for e = 6"-1 to 0 by step of -1 • u_ (°) (x) = u Y(°)6+1 (x) Vx e Ae

Procedure FIC(g)

If g = g Then solve prob lem (._og,) Else
begin

* 1 st step resolution on the grid level e+l :

, 2 nd

end

solve problem (5o6+1) providing u

for k = 1 to y(g+l) do FIC(g+I)
/_+1

step - correction on the grid level g :

solve problem (:Pg) with fg = fg + gig re(q))

where re(q0) is computed by equations (3)(4)(5)(6)

and ZI is the characteristic function of Ig in_g

Remarks •

1) In any case, in order to avoid the explicit calculation of co(g,x)(u)

by eq.(6), an economical solution is to use an approximate correction for FIC.

In that version, called FIC(co), only the flux integrals on the interface F
X

will be evaluated by quadrature formulae (Simpson), and an average weighting

factor c0(g) will be determined by a semi-empirical way for each grid level.

Besides, it can play the role of an average relaxation parameter for the

iterative zoom algorithm when co(g)=co, Ve;eC.

281

2) In terms of domain decomposition, the two-grid FIC for levels e and

e+l can be regarded as a full overlapping iterative algorithm that splits the

whole composite problem in two Dirichlet/ Neumann boundary value sub-problems:

- the problem on the grid level g+l with a Dirichlet boundary condition

on the interface F_,_+ 1 (2),

the problem on the level e with a condition of relaxed transmission of

the flux on the interface Ye,/_+l through (4), which demands the flux

continuity at convergence. That condition can be considered as a Neumann

boundary condition on Y&e+l by the technique of "fictitious domain" in [6].

General Comments on the Three Algorithms

i) The two-grid FAC method for levels _ and _+1 can be regarded as an

iterative procedure to solve "exactly" the discrete composite problem coming

from an adequate discretization of problem (P) on the composite grid I'Ve

defined by the association of the grids ITe and _+1" Therefore, the principle

is to apply a multigrid algorithm between the grids _ and _e on one hand, and
w

between the grids I'$e and I'Ve+ 1 on the other [5,4]. There is therefore a

correction phase on both the grid levels _ and e+l with respect to the

discretization on the composite grid. In that sense, FAC can be viewed as an

"exact" solver for the composite problem. Because the composite grid stencils

agree with the coarse and fine grid stencils, respectively, outside and inside

the refinement region, and because the correction equations are solved

exactly, the composite grid residual is nonzero only at the interface.

ii) Due to the attention needed for the nonuniform discretization of the

problem on the interface zone of the composite grid, FAC method can prove to

be a little difficult to implement in a more than two grids version.

iii) On the contrary, LDC and FIC methods, which are easier implementing

in the multilevel case, are only approximate solvers • they don't use a

composite grid and neglect the fine grid residual correction. The former

consists in the local correction of the solution defect inside Ae as the

latter involves a local flux residual correction through the interface Ye,e+l"

iv) Both FAC and FIC methods provide corrections by balancing fluxes

computed from both coarse and fine grids across the interface. They take the

best advantage of a conservative discretization of the equations, for example,

by a finite volume technique.

282

NUMERICAL APPLICATIONS

In that context, we propose to compare three types of multigrid zoom

algorithms on two examples of a linear elliptic problem (7,) presenting,

respectively, a discontinuity of the operator coefficients for (7,1) [8], and a

singularity of the exact solution for (7'2) [1] :

(7,)

L(u) -= -div(a(x).gradu) +or(x) u = f(x) in _ =]0,1[X]O,l[(1')

_, _>0 _ L°°(_) et f e L2(_)

well-posed boundary conditions on F'=O_ symbolically calledby (BC)

These problems were already tested successfully on the FIC method in [7].

Problem (7,1) is heterogeneous and defined by f-=0, ct-=0, o-_--100 inside a disk of

radius 0.1 and _-1 outside (Fig.la). A solution computed on a very fine basic

mesh (5122) will be used as the reference solution u*. Problem (7'2) is defined

by f-=0, tx-=0, 0"-_--1(Fig.lb); the exact solution is u* = ln(r) with r= v/x2+ y2.

Numerical Implementation and Procedures

The discretization on each grid, independant of the geometry of the

problem, is made in a conservative way by a finite volume method on a uniform

Cartesian mesh. The classical five-point scheme is used providing a second

order precision. The resolution of the linear systems, which are

block-tridiagonal and symmetric positive definite, is performed by a fast and

efficient solver • a preconditionned conjugate gradient (PCG) method (CG-SSOR)

vectorized by a Red and Black numbering of unknowns. The results for two grids

are obtained by an "exact" solve on each grid. The results for multilevel LDC
,

or FIC (_ > 1) are given for an "inexact" solve on each grid (including

Fig.5b), i.e., a fixed number itcg of iterations of PCG on each grid with •

itcg=2 for h ° = 1/8 itcg=4 for h 0 = 1/16 itcg=8 for h ° -- 1/32

The results are analyzed with different norms (L °°, L 2, L-energy norm) of

the discrete error evaluated on the global basic grid (BG, _=0). We study the

asymptotic evolution of the relative error norms _= lie°011 / Ilu_ll (No Zoom) and

0 ;-0[7<°) = lie <°)ll / [[u I I (after "y(0) Zoom iterations) with ek = u k - u ° , which

allows us to estimate an asymptotic average rate '_ •

283

* for C = 1, as function of h 1 or p (for a fixed h 0)

_ 1 l/m {
'c = , with m = max p

_oy(o) (p=m)

Here m=3 and 7(0)=2, see Tab.l, Tab.2, and Fig.2a, Fig.3, and Fig.4.

* for g° > 1, as function of g* (for a fixed ho and p=l)

1/m

x = , with m= max

_oY(°) (g*=m)

Here m=3 and 7(0)=10, see Tab.3, and Fig.2b.

The convergence rate of LDC, FAC and FIC have been also compared (Tab.4):

* for FAC : we study the variations of the Euclidean norm of the

Irko(U)12 for k = 1 to T(0) (Fig.5a), and a convergence ratecomposite residual

p is calculated by a geometric mean :

r7(O) (-
I o u) 12] 1/(7(o)- 1)

P = I r'0 (u) 12/j
w

* for LDC or FIC: we study the variations of quantities 8 k= k k-10 IlU0 - u0 2

for k = 1 to y(0) (Fig.5b), and a convergence rate p is then estimated by :

p

8T(o) 1/(7(o)-1)
o

8 t
0

Comparative Numerical Results

1) By comparing a no-zoom method and a ZOOM one, we notice that the

error globally decreases ; between two increments of p or g*, it is divided by

an elevated average x-factor of between 1.5 and 3.5 (Tab.l, Tab.2, Tab.3). For

problem (_°2), the decrease is monotonic and there seems to be good analogy

between the variation of the error as a function of p (for e*=l) or of _* (for

p=l), (see Fig.2a and Fig.2b). The influence of the position and dimensions of

the local grids (ZG) becomes negligible as h 0 decreases [7]. Due to the choice

284

of discretizing on a Cartesian mesh independently of the geometry of the

heterogeneity, the error for problem (_'1) does not decrease monotonically as

already noticed in [7,8].

2) - In many cases, the error obtained with zoom is less than computed

without zoom on a single basic grid of ,.mesh size h0< he*. In particular, Fig.4
shows that the local discrete error le_[calculated point by point on the

diagonal of the domain (_2), by a two-grid FIC method (h0=l/16, hi=h0/2 , k=2)

is globally better than the error obtained with No Zoom at the corresponding

nodes of BG (e=0, h0=1/32). The former results are more accurate inside the

refinement region and get closer to the latter case far from the interface. Such

remarks can also be made for the discrete error norms in the other Tables or

Figures. However, the error is not reduced beyond a threshold value consistent

with the order of precision of the discretization schemes on the different

grids (cf, the multigrid defect correction method using Richardson

extrapolation [1]).

3) The two-grid FAC and FIC methods yield error results of the same

order of magnitude for both problems. These results are far better than for

LDC for problem (_Pl), where the flux conservation plays an important role. On

the contrary, LDC yields as good results as the others for problem (Y'2), and

sometimes better. However, as LDC does not deal with the interface fluxes, but

only works on the solution inside the open refinement region, it can become

inefficient (x = 1) if the refinement region does not contain enough coarse

nodes on which the local defect correction is performed (Tab.l, Tab.2, Tab.3).

4) - The results with the version F!C(CO) for 0,1 < co < 0.5 are nearly

similar to those obtained with co*= co(_,x)(u) calculated by (6) (Fig.3). That

could justify the interest of the approximate version FIC(co), and particularly

as a preconditioner of the discrete problem, as suggested in [4].

5) - Because of its exact character, the FAC method yields the far best

convergence rate, a mean value of 0.16, nearly independant of both h ° and h 1

(Fig.5a and Tab.4). We obtain a mean convergence rate of 0.42 for FIC(co=0.2),

just a little better than LDC with 0.50 These convergence rates remain not

very sensitive to the variations of h 0 and C (Fig.5b and Tab.4). However,

those of FIC have a noticeable tendency to become better as the number of grid

levels (or e*) increases (see Tab.4).

285

CONCLUSION

Despite its non-exact character, FIC provides as good results as FAC,

concerning the analysis of discrete errors for both the two tested problems.

In particular, FAC and FIC proved to be better than LDC for problems where the

flux conservation locally plays a main role.

FAC yields very good convergence rates (p=0.16), better than LDC (p=0.50)

or FIC (p=0.42), but its multilevel implementation remains more difficult.

However, the use of FIC as a preconditioning technique of the discrete problem

is likely to be very interesting, especially for the approximate version

FIC(c0) where the factor co becomes a relaxation parameter. We are currently

testing such a procedure for Navier-Stokes problems.

REFERENCES

1. Hackbush, W.: Multigrid Methods and Applications, Series in Computational

Mathematics, Springer-Verlag, Berlin, 1985.

2. Berger, M.J.; and Oliger, J.: An Adaptive Mesh Refinement for Hyperbolic

Partial Differential Equations, J. Comp. Phys., 53, pp. 484-512, 1984.

3. Bai, D.; and Brandt, A.: Local Mesh Refinement Multilevel Techniques, SIAM

J. sOL Stat. Comput., Voi.8, No. 2, pp. 109-134, 1987.

4. Bramble, J.H.; Ewing, R.E.; Pasciak, J.E.; and Schatz, A.H.: A

Preconditioning Technique for the Efficient Solution of Problems with Local

Grid Refinement, Comp. Meth. Appl. Mech. Eng., 67, pp. 149-159, 1988.

5. McCormick, S.F.: Multilevel Adaptive Methods for Partial Differential

Equations, SIAM, Philadelphia, 1989.

6. Angot, Ph.; and Caltagirone, J.P.: New Graphical and Computational

Architecture Concept for Numerical Simulation on Supercomputers, Proc. 2nd

World Congress on Computational Mechanics, pp. 973-976, Stuttgart, 1990.

7. Angot, Ph.; Caltagirone, J.P.; and Khadra, K.: Une Mdthode Adaptative de

Raffinement Local • la Correction du Flux _ l'Interface, C. R. Acad. Sci.

Paris, t. 315, Sdrie I, pp. 739-745, 1992.

8. Angot, Ph.; and Caltagirone, J.P.: Homogdndisation Numdrique en Thermique

des Structures Hdtdrog_nes Pdriodiques, Proc. 4th EUROTHERM Conf., pp. 122-126

Nancy, 1988.

286

Tab. 1, Problem (21) - Two Grid Zoom _'(0) 2 Discrete L z= - norm of the error

h 0

1/8

'1/16

1/32

NO ZO0_,

h
o

h_

t 2p

p=l

p=2
0.434E-I

p=3

T

p=l

p=2
O. 689E-2

I p=3T

1:'=2

0. 982E-2

p=3

T

1/64 0.192E-2

1/128 0.648E-3

1/256 0.193E-3

ZOOM xz=0.375 et x2=0.625 ZOOM xt=0.25 et x==0.75

LDC FAC FIC LDC FAC FIC

= 0.55 u = 0.41

0.434E-: 0.493E-1 0.210E-1 0.434E-1 0.732E-2iO.639E-;

O.434E-1IO.790E-1 0.122E- 0.434E-I 0.133E-1!O. IO6E-

0.434E-t:O.330E-1 0.589E-2 0.434E-1 0.289E-2 0.251E-;

1.00 1.10 1.95 I 1.00 2.47 2.59
r

0.689E-2 0.167E-I 0.119E-IIO. 739E-2 0.986E-2 0.106E-

0.689E-2 0.374E-2 0.394E-_ 0.297E-2 0.123E-210.161E-;

!0.689E-2 0.255E-2 0.339E-2 0.214E-2 0.673E-3 0.592E-3

1.O0 1.39 1.27 1.48 2.17 2.27

0.136E-10.342E-20.538E-20.244E-20.160E-20.201E-2

0.140E-I 0.295E-20.412E-20.174E-20.428E-30.392E-3

0.134E-I 0.326E-20.331E-20.153E-20.233E-30.262E-3

0.90; 1.44 1.44 1.86 3.48 3.35

Tab. 2.
Problem (_o2) - Two Grid Zoom 3"(0) = 2 - Discrete L-Energy

ho NO 200M

1/8 0.342E-1

1/16 0.206E-1

1/32 0.133E-1

1/64 0.888E-2

1/128 0.607E-2

1/256 0.420E-2

h h° ZOOM xl=O eL x2=0.25 ZOOM xt=O eL xa=0.5

1 2 p
LDC FAC FIC LDC FAC FIC

w = 0.20 '.' - 0.2(

]:,=1 10.342E-10. 152E-10. 168E-li0. 120E-10. 138E-10. 139E-]

p=2 0.342E-1 0.817E-; !0. 110E-1 0.441E-2 0.511';-2 0.553E-2

p=3 0.342E-1 0.622E-2 0.990E-2 0.221E-2 0.250E-2 0.346E-2

•r 1.00 1.77 1.51 2.49 2.39 2.15

p=l 0. 723E-20. 829E-20. 837E-20. 704E-20. 818E-20,819E-2

p=2 0. 270E-2J 0. 308E-2i O. 337E-20. 232E-20. 282E-20. 285E-2

p=3 0. 140E-20. 152E-20. 215E-20. 627E-30. 975E-30. 107E-2

z 2.45 2.38 2.12 3.20 2.76 2.68

p=1 0.454E-20.527E-20.527E-20.453E-20.526E-2_0.526E-2

p=20. 150E-20. 182E-20. 184E-20. 149E-20. 180E-20. 180E-2

p=3r II0. 3.407E-3200.2628E-3I.770. 2.699E-3670.3.387E-3250.2.570E-3860.2577E-3.85

1/512] 0.294E-2

norm of the error

287

Tab. 3. Problem (:P2) - Multilevel Zoom LDC/FIC

'(0) = I0, h£+ I = h/2 0 -< t -< _ -I , x

Discrete L 2 norm of the error

ho I N0 ZOOM
t*-0

J

L/B

1/16

1/32

1/64

1/12_

1/256

1/512
i

0.209E-I

0.I05E-1

0.529E-2

0.265E-2

0.132E-2

0.662E-3

0.331E-3

!
grids

t" = 1

t" = 2

£ =3

T

£ =1

£" = 2

£ =3

T

t • = 1

l* = 2

l" = 3

= 0 and x = 0.5 -
2

ZOOM L 200H FIC

L/X: _ = 0.2 _ = 0.351

 8o6E-2 86,E-2 o78 -2

3.368E-2 9.606E-2 0.428E-2

I.__ 1.51 1.70

0.399E-210.404E-2 0.394E-2

O.I57E-210.199E-2 0.166E-2

o.-_o2E-21o.165E-20.115E-2
-- i

2.18 1.85 2.09

0.186E-Z!O. Z02E-2 0.249E-2

0.969E-3 0.768E-_ 0.809E-3

0.711E-3 0.416E-_ 0.514E-3

1.95 2.33 2.18

Tab. 4. Problem (P2) - Multilevel Zoom LDC/FIC - Two Grid Zoom FAC

he + = h_/2 p = 0 and x = 0.5 -3"(0) = 10, I 0 -< t -< t -I , x I 2

Convergence rate p

h o

1/8

1/16

1/32

nmmbeP

of

grids

?.'=2

l"-3

£"=1

t* =2

ZOOM

LDC

p=l p=l

0.53 0.46

0.45 0.42

0.43 0.34

0.56 0,44

0.49 0.42

l = 3 0.48 0.39

t" " I 0.50 0.47

£" = 2 0.51 0.44

g* = 3 0.50 0.40

ZOOM FIC ZOOM

u = O. 2 FAC

p=l p=2 p=3

0.14 0.15 0.15

0.14 0,16 0.16

0.15 0.17 0.1E

288

u = -0.5

8u

8n
-0

x I u = 0.5 x 2

_U

8n
-0

Fig. la. Problem (_1)

U/F = In(r)

w --

;J
J

L
X 2

m .--

Fig. lb. Problem (502)

289

3,43E-2

2,06E-2

8,22E-3

2,81E-3

Discrete L = norm of the error (log)

-4- No Zoom i

"-I-- Zoom l/h ° - 8

Zoom 1/h° • 16

B,79E-4 _ Zoom I/h ° . 32
I

--L •

8 16 32

Mesh Grids N = 1/h
0

Fig. 2a.

p 1

p 2

p-3
1 I l__

64 128 256

(BG) and h = h /2 p (ZG)
[o

512

Problem (:P2) - Two Grid Zoom with FIC (to = 0.35)
3"(0) = 2 - x = 0 and x = 0.5

1 2

3,43E-2

2,06E-2

8,25E-3

2,85E-3

9,88E-4

Fig.

Discrete L ® norm of the error (log)

-'- No Zoom

--_ Zoom 1/h o 8
o

Zoom 1/h° - 16

Zoom 1/h - 32
o

-| l |

8 16 32 64

Mesh Grids N = l/h
o

_." =3
! I

128 256 512

(BG) and h_+ 1 = h_/2 0 -¢ _ _ _*-I (ZO)

2b.
Problem (:P2) - Multilevel Zoom with FIC (to = 0.35)

_'(0) = lO - x = 0 and x = 0.5
1 2

290

Discrete L-Energy norm of the error

1,6E-02

1,4E-02

1,2E-02

1,0E-02

8,0E-03

6,0E-03

4,0E-03

Fig. 3.

1 1,1 1,2 1,3 1,4 1,5

Values of _0

Problem (_P2) - Two Grid Zoom FIC - Variations with

h = 1/16, h 1 = h /2 p _'(0) = 2, x = 0 and x = 0.5
0 0 ' 1 2

Discrete error on the Basic Grid of mesh size ho-1/16 (log)
2,0E-01

2,0E-02;

2,0E-03

2,0E-04

2,0E-05

2,0E-06
1

" N°Z°°m h°_ 1/16 i
• _ Zoom hi 1/32 •

_ " • J -_ N°z°°m h°'1/32 "I

.... L D "°Z°°m"°"''6' I

\
Refinement Regior

|

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interior diaqonal nodes

Fig. 4. Problem (_°2) - Two Grid Zoom with FIC (_o = 0.31)
3'(0) = 2, x = 0 and x = 0.5

1 2

291

Euclidean norm of the composite residual (log)

2

2,0E

2,0E-04

2,0E-05

2,0E-06

2,0E-07

2,0E-08

2,0E-09

2,0E- 10

2,0E- 11
1

Fig. 5a.

--_ ho- 118 /3- 0,14

ho- 11i6 p- 0,14

ho- 1/32 p • 0,15
L____+L-_-- l k_---

2 3 4 5 6 7 8 9 10

Number of V-cycles

Problem (_P2) - Two Grid Zoom FAC - Convergence rate p
= 0 and x = 0.5

h I = ho/2 , _(0) = I0, x I 2

Discrete L 2 norm of two successive iterates difference (log)

Fig. 5b.

1,5E-01

1,5E-02

1,5E-03

LDC p • 0,56

--E]-- FIC p - 0,44

1,5E-04
1 2 3 4 5 6

Number of V-cycles

Problem (P2) - Two Grid Zoom with LDC and FIC (_ = 0.2)- Convergence rate p

, = h /2 , _'(0) = 10, x = 0 and x = 0.5
h ° = 1/16 h I o l z

292

N94-2 6.
Multi-Grid Domain Decomposition Approach for Solution of

Navier-Stokes Equations in Primitive Variable Form

Hwar-Ching Ku *

Johns Hopkins University Applied Physics Laboratory

Johns Hopkins Road, Laurel, MD 20723

Bala R_aswamy

Department of Mechanical Engineering & Material Science

Rice University

Houston, Texas 77251

Summary The new multi-grid (or adaptive) pseudospectral element method has been carried out

for the solution of incompressible flow in terms of primitive variable formulation. The desired features

of the proposed method include (1) the ability to treat complex geometry; (2) the high resolution

adapted in the interesting areas; (3) the minimal working space; and (4) effective under the multiple
processors working environment.

The approach for flow problems, complex geometry or not, is to first divide the computational

domain into a number of fine-grid and coarse:grid subdomains with the inter-overlapping area. Next,

implement the Schwarz alternating procedure (SAP) to exchange the data among subdomains, where

the coarse-grid correction is used to remove the high frequency error that occurs when the data

interpolation from the fine-grid subdomain to the coarse-grid subdomain is conducted. The strategy

behind the coarse-grid correction is to adopt the operator of the divergence of the velocity field, which

intrinsically links the pressure equation, into this process. The solution of each subdomain can be

efficiently solved by the direct (or iterative) eigenfunction expansion technique with the least storage

requirement, i.e., O(N '_) in 3-D and O(N 2) in 2-D.

Numerical results of both driven cavity and jet flow will be presented in the paper to account for

the versatility of the proposed method.

*Partially supported by the SPAWAR under the Contract Number N00039 - 91 - C - 0001

293

1 Introduction

Due to the advance of numerical techniques, numerous CFD algorithms have been developed to

pursue the hard-to-approach flow problems. Nevertheless, numerical algorithms should have desired

features of (1) the ability to deal with the variety of geometrical shapes; (2) arbitrary layout of dense

grid points in the interesting areas; (3) the minimal working space; and (4) the low computational

time to achieve such a goal. The development of a pseudospectral element method in these areas is

our major concern.
One of the improvements in the area of feature (2) is the multi-grid technique, which has long been

advocated by the finite-difference method [1, 2]. On the same computational domain, a sequence of

uniform grids are employed to accelerate the convergence of iterative methods. The work rests on the

"standard coarsening," i.e., doubling the mesh in each direction from one grid to the next coarsest

grid and also smoothing the residual to the next coarse grid (restriction). Solve the problem on the

coarse grid (low frequency domain) and the coarse-grid correction transfers back (prolongation) to

the fine grid (high frequency domain) to gain rapid convergence. The technique developed so far,

even with the inclusion of an adaptive scheme, is still limited to the simple complex geometry with

uniform grids in the Cartesian coordinates, but is less for the non-uniform grids in the curvilinear

coordinates.
The SAP iterative scheme has been successfully applied by the pseudospectral element method

to those (simple complex) configurations where the overlapped grids are located at the same places

[3, 4]. Here we refer to such cases as a single-grid SAP method because no error is involved during the

data interpolation process. But under some circumstances, due to the complexity of the geometrical

configuration such as possible layout of mixed types of grids (Cartesian, "0" or "C") or the necessity

of applying adaptive fine grids for high resolution in one area and coarse grids for less resolution

in others, the overlapped grids cannot be collapsed at the same position. Careful treatment on the

overlapped grids by the SAP iterative scheme to eliminate the high frequency error due to the data

interpolation will be the main objective in this paper. On the other hand, the question arises of

how the continuity equation is satisfied in the overlapping area (including the interfaces between the

fine-grid and coarse-grid subdomains) when solving the incompressible Navier-Stokes equations in

primitive variable form. It reflects the fact that the boundary conditions for the pressure should link

the incompressibility constraint in some respects. Extension of single-grid SAP to the multi-grid SAP

domain decomposition method to overcome the above-mentioned difficulties will also be addressed.

The paper consists of five additional sections. Section 2 derives a primitive variable form of the

Navier-Stokes equations. Section 3 discusses the multi-grid SAP domain decomposition method.

Section 4 presents numerical results of proposed 2-D problems, and the final section provides the

conclusions.

2 Primitive Variable Formulation

In tensor notation, the time-dependent Navier-Stokes equations in dimensionless form can be de-

scribed as

Oui c3ui Op 1 02ui (la)
& +uj_- +Oxj Ox_ Re cOx_

Ou----2= 0 (lb)
cOxi

294

Here ui is the velocity component and Re is the Reynolds number.

The method applied to solve the Navier-Stokes equations is Chorin's [5] splitting technique. Ac-
cording to this scheme, the equations of motion read

Oui cOp

--_ + -_x _ = F, (2)

where F_ = -u j cOu_/ cOx:+ I /Re cO2udOx _.

The first step is to split the velocity into a sum of predicted and corrected values. The predicted

velocity is determined by time integration of the momentum equations without the pressure term

,_n+l __ U n ___AtFin (3)

The second step is to develop the pressure and corrected velocity fields that satisfy the continuity
equation by using the relationships

(4a)

COuTM

cOx_ - 0 (45)

Here the superscript n denotes the n-th time step. Note that the size of a stable time-step At can be

increased by using an adaptation of Runge-Kutta techniques [6] for the high Reynolds number and

the Stokes solution for the low Reynolds number [3], respectively.

An equation for the pressure can be obtained by taking the divergence of Eq. (4a). In view of Eq.
(4b), it governs

02p 1 corgi

cox - At (5)

Note that whenever solving Eq. (5) the identity of Eq. (4a) should be utilized to absorb the given
boundary conditions of the velocity components [7].

Ifp satisfies Eq. (5), then u n+_ does indeed satisfy Eq. (45). The solution of the pressure equation,

Eq. (5), is the most computationally expensive step, while in Cartesian coordinates it can be directly

solved numerically by the separation of variables [7]. Eq. (5) is of the general form,

Lp= S (6)

for some linear operator L on some finite dimensional vector space. The properties of the operator
L depend on the methods chosen to represent the fields and their derivatives.

Let the pressure p and source term S in Eq. (6) be expanded in a series of eigenfunctions such
that

p = EX l5 EY T EZ T (7a)

S = EXSEyTEZ r. (75)

then the solution of three-dimensional pressure Eq. (5) can be reduced to the simplest algebraic form

(4, + + = (s)

295

where ai, flj and ")'k are the eigenvalues with respect to the discrete derivative matrices of the linear

operator, L, and EX, EY, EZ are the corresponding eigenvectors associated with each eigenvalue.

However, eigenvalues may not be real due to the complexity of an operator L. Without putting any

restriction on eigenvalues, complex eigenvalues and their associated eigenvectors are permitted if the

pressure gradient at the imaginary part vanishes. This is true because only the pressure gradient
drives flow instead of the pressure itself. However, the effort of the matrix multiplication will be

increased by a factor of four if all the calculations of Eqs. (7) are performed by the purely complex

variables. Fortunately, not exceeding a factor of two will be reached if one takes advantage of (1) the

purely real part of eigenfunctions for matrix multiplication; (2) the source term S being real; and (3)

choosing only the real part of pressure as the pressure solution. The way for (1) includes reordering

the eigenfunction into two parts: real versus complex, and similarly for the eigenvalues.

The iterative preconditioned method for the solution of pressure in the curvilinear coordinate

system can be found in [8]. Note that if there are N degrees of freedom in each direction the overall

memory required for finding the solution to the pressure equation in three dimensions is O(N'_). This

is the same type of maximal storage efficient scaling that we have for the velocity field.

Viewing the solution of the Navier-Stokes equations by the splitting method, two steps account

for most of the run time, predicted velocity and the pressure solution. The bulk of these two steps

can be concisely described in terms of dot products and matrix multiplication between subsets of

array. Importantly, no data dependency occurs when running programs on parallel machines.

3 Domain Decomposition with Multi-Grid SAP

The solution of the Navier-Stokes equations via the domain decomposition approach consists of first

dividing the computational domain into a number of subdomains with inter-overlapping areas, where

the grids inside the overlapping area may or may not be located at the same places. Next imple-

ment the SAP for exchanging data among subdomains, i.e., solving the problem on each subdomain

sepaxately and then updating the velocity field on the overlapped interfaces. The advantages of this

approach include (i) less memory access, loca_ rather than global, and (ii) easy treatment of complex

geometry.
In addition to the Lagrangian constraint between the pressure and velocity fields, the noncoinci-

dent overlapped grids in the inter-overlapping areas among subdomains even enhance the difficulty

of applying the multi-grid technique. However, the idea of "coarse-grid correction" is still effective

to reduce the high frequency error from the interpolated residual of the fine-grid subdomain. The

strategy behind the coarse-grid correction process is to adopt the idea proposed by Thompson and

Ferziger [9] and is modified as

vo. Uo- vo. = - (9)

Here Vo. represents the operator of divergence on the coarse-grid subdomain. I / is an interpolation

operator from the fine-grid subdomain f to coarse grid subdomain c, and u is the velocity component.

r I is simply the result of the divergence of the velocity field which should be set to zero. The left hand

side of Eq. (9) is the difference between the coarse-grid operator acting on the coarse-grid subdomain

and the coarse-grid operator acting on the interpolated fine-grid subdomain (which is held fixed).

The right hand side of Eq. (9) is the interpolated residual of the fine-grid subdomain. It is obvious

296

that once the solution of the fine-grid subdomain has been found the residual will be zero (exactly

satisfying the pressure equation), and it also implies

u_ = ./'_u! (10)

When the residual is non-zero, Eq. (9) acts as a forcing term for the coarse-grid correction to transfer

the correction of the velocity field back to the fine-grid subdomain, i.e.,

u t.'_*_= u._l'_ + I_(u_- I[u_ _d) (11)

This is vital for the success of the scheme. Changes in the velocity field are transferred back to the

fine-grid subdomain rather than the velocity field itself. Notice that when the overlapped grids in

the overlapping areas are collapsed at the same places the interpolation operator I[automatically

becomes a unitary matrix.

The multi-grid SAP iterative solution of the incompressible Navier-Stokes equation in primitive

variable form for a driven cavity flow sketched in Fig. 1 is summarized by the following algorithm:

1. First assume u '_+l on AB. Usually u '_ will be a good initial guess.

. Solve fine-grid domain II employing the boundary conditions derived from the divergence of

the velocity field, including on AB, where the pressure solution is directly obtained by the

eigenfunction expansion method.

. With the interpolated solution of u n+l from step (2) on domain IIIc I, solve coarse-grid domain

I employing the same type boundary conditions including on _ to update u n+l on domain

III C II by the coarse-grid correction process.

4. Repeat steps (2) & (3) until the velocity u n+l on AB, CD does not change.

In order to guarantee that consistent values of velocity (or pressure gradient) be generated in the

overlapping domains III, satisfying Eq. (10), the divergence of the velocity field V. u needs to be

actually computed in whichever domain I or II is counted [4]. Since u on domains III is not known

a priori, the divergence of the velocity field is only set to zero at the first SAP iteration for step (2).

According to this approach, the continuity equation is satisfied on domains II (including III C II)

and I (excluding III C I), which is revealed from Eq. (9) that the continuity equation is only satisfied

on the fine-grid domain II. More specifically, the issue of how to satisfy the continuity equation along

the interfaces of fine-coarse grid domain can be easily resolved by the proposed approach, namely,

V. u on AB satisfied on the coarse-grid domain I, and V. u on _ satisfied on the fine-grid domain

II. However, the error index of the continuity equation on domain III C I will indicate how good the

interpolation is (affected by the layout of overlapped grids) and whether any steep change of flow
field exists.

Three main issues occurring in the overlapping area between the fine-grid and coarse-grid subdo-

mains one might often encounter are how to (1) efficiently implement the interpolation; (2) adequately

represent the predicted velocity; and (3) explicitly impose the global mass conservation. Each will

be addressed separately.

297

3.1 Data interpolation

Finding the image (_,r/), -1 < _ < 1,-1 < 77<_ 1, of a collocation point (x,y) from the fine-grid

subdomain II mapped onto the coarse-grid subdomain I (or vice versa) is first determined by using

the two-dimensional Lagrange interpolation to seek its corresponding position falling into an element

on the coarse-grid subdomain that contains (M + 1) x (N + 1) collocation points, _i = cosrri/M(i =

O, ...,M), r/j = cosTrj/N(j = 0,...,Y), such that

M N

x = Y]_ __, ara,,Tra(()T,_(r/) (12a)
m:O n--0

M N

y = _ _ b,,_Tra(_)T_(r/) (12b)
ra----O n=0

where Tra denotes the ruth order Chebyshev polynomials. Unknown expansion coefficients, aran, bran,

can be easily obtained by the prescribed points (x, y) on the coarse-grid subdomain I through

M N

x(_,,rlj) = _ y]_ ara_,Tra(_i)T,_(r/j) (13a)
rn=O n=O

M N

y(_,,r/j) = _ _ bm,Tr_(_i)T_(r/j) (13b)
ra=0 n=0

With a given point (x, y) in the physical space of fine-grid subdomain II, its image (_, 77) on the

coarse-grid subdomain I can be iteratively solved by the Newton-Raphson method. Once the one-

to-one correspondence between the fine-grid and coarse-grid subdomains has been established, the

equation required to generate a function el(x, y) on the fine-grid subdomain interpolated from the

coarse-grid subdomain, now becomes

M N

ef(x,y) = _ _ Ni(_)Nj(r/)¢c(_,,r/j) (14)
i=0 j=0

Cwhere ¢ (_i, rb) denotes the function value at the collocation point (_, r/j) on the coarse-grid subdo-

main; and N_(_), Nj(r/) are the shape functions defining the geometry of the element on the coarse-grid

subdomain, whose expressions are

M

N,(_) = _ Tra(_)_',n(_,)
ra=0

N

n=0

(15a)

(15b)

where the matrices Tra(_) and 7',_(_) are the Fourier cosine series and their inverse [7]. Note that the

shape functions Ni(_), Nj(r/) satisfy the Kronecker-delta property, i.e., Ni(_,_)= 8,ra, Nj(r/_) = 6j_.

Be aware that it requires much less effort to perform the data interpolation if the one-to-one

correspondence for the shape functions between subdomains can be stored (once and for all). Also

the cost for such additional memory is negligible compared to that declared by a single variable.

298

3.2 Predicted velocity

Since the predicted velocity in the overlapping area generated from Eq. (3) by the fine-grid subdomain

is slightly different from that obtained by the coarse-grid subdomaln, how to control the predicted

velocity in order to keep the error index, t2 norm of w = []uc-I[ul][minimal, is of great importance.

Numerical experiments suggest that the following dynamic relationship

(16)

gives the best fit. Here the exponent a is chosen as 0.4 for various tested problems.

3.3 Global flow rate

For the inflow-outflow problems the coarse-grid velocity field interpolated from the fine-grid subdo-

main may not exactly satisfy the global mass conservation, and a slight adjustment to the velocity

field is imperative. A common-used formula will meet such a requirement, i.e.,

f u _x_a. dA
uoldJ._u'__' = _ t

/ H old . dA
(17)

4 Results and Discussion

For the numerical test of the driven cavity flow problem, layout of elements (6 points per element)

in the fine-grid and coarse-grid subdomains at the Reynolds number of 400 and 100 are displayed

in Figs. 2a and 2b, respectively. The overlapping area is not explicitly shown in the figures, but

just imagine the extension of one more element from the coarse-grid subdomain into the fine-grid

subdomain. The layout of elements is in accordance with the requirement to resolve the steep

changes inside the boundary layers. When exchanging the data through the interpolation in the

inter-overlapping area, the high frequency error introduced by the fine-grid subdomain will pollute

the results throughout the whole computational domain. It can be simply proved by checking the

error index, g2 norm of w = [[uc - I[u/[[, in the overlapping area. w will increase with marching

in time domain, and eventually become an unreasonably big number under which the solution does

not exist. With the multi-grid SAP approach, both results produce O(10 -4) for w, instead. When

comparing the streamline plots, er_in = -0.1055 for Re = 100 and ¢,_i_ = -0.1163 for Re = 400, with

the most accurate results of Ghia [10], good agreements can be observed in Fig. 3.

For the inflow-outflow jet problem, a nozzle is designed to gain a high speed fluid with a smooth

change of the convergent channel. The configuration of jet flow is plotted in Fig. 4. A jet emanating

from the nozzle with an aspect ratio H/D = 144 (the width of tank to nozzle) is used to understand the

turbulent characters through the direct numerical simulation. With a strong stratification imposed

in the vertical direction the two-dimensional turbulent flow calculation will be a good approximation

to the three-dimensional case. The calculation is carried out up to the Kolmogoroff length scale

where the energy transferred from the large scales is in equilibrium with the energy dissipated in the

smallest scale by the molecular viscosity. Certainly, for the purpose of direct numerical simulation

299

the Reynolds number should not be large so that the machine can still handle the huge number of

points required for the resolution of different length scales. The computational domain is decomposed

into three subdomains: the upstream nozzle where the inflow is developed to gain a high speed, the

immediate downstream from the exit of the nozzle where the high speed jet is discharged into the

tank, and the far downstream (fine grids) where a well-developed turbulent flow can be traced.

Let us first check the error index w for the inflow-outflow jet problem without using the multi-grid

SAP technique. The w around O(10 -_) seems all-rlght at Re = 100 initially, but the onset of noise

starts to destabilize the downstream flow field at the Reynolds number of 250 and w increases up

to O(10-2). That clearly demonstrates the high frequency polluting that results on the fine-grid

subdomain, but the noise can be totally removed by using the multi-grid SAP technique. Fig. 5

depicts the streamline plot of jet flow at Re = 250. During the time evolution of the jet flow, the

symmetry of the jet front will not be distorted at the early stage (Fig. 5a) until the phase speed of

vortex shedding (due to flow instability) travels faster than that of the jet front. As seen in Fig. (5b),

a pair of vortices adjacent to the jet front persisting throughout the course represent the extrusion

of the jet into the ambient fluid. Once the jet front is caught up by the incoming travelling waves,

the energy transferred by the vortex shedding, in terms of the cascade process from the highest at

the nozzle exit (high shedding frequency) to the lowest at the jet front (low shedding frequency),

splits into two parts, one for the jet front to push against the ambient viscous resistance, another

for the vertical motion. The intensity of vertical motion behind the jet front is gradually enhanced

as visualized by the splitting streamlines, and their patterns move backward toward the exit of the

nozzle where a distinct pair of vortices exist. The appearance of similar pairs of vortices can also be

confirmed by the experiment at the high Reynolds number [11].

5 Conclusions

The solution of the Navier-Stokes equations in a primitive variable form has been solved by the pseu-

dospectral element method via the multi-grid domain decomposition technique. The computational

domain is divided into a number of simple subdomains with the inter-overlapping zone, of which the

fine grids (or fine-grid subdomain) are used in the areas with the steep change of flow field while the

coarse grids (or coarse-grid subdomain) are used in the others. During the data exchange among

subdomains, the coarse-grid correction technique is used to eliminate the high frequency error caused

by the data interpolation from the fine-grid subdomain to the coarse-grid subdomain.

Both driven cavity and jet flow demonstrate the versatility of the proposed multi-grid method.

References

[1] W. Hackbusch, Multi-Grid Methods and Applications, Springer-Veriag (Berlin), 1985.

[2] A. Brandt, Math. Comput. 31,333 (1977).

[3] H. C. Ku, R. S. Hirsh, T. D. Taylor and A. P. Rosenberg, J. Comput. Phys. 83,260 (1989).

[4] H. C. Ku, T. D. Taylor and R. S. Hirsh, Comput. Methods in Applied Mech. and Eng., 75, 141

(1989).

300

[5] A. J. Chorin, Math. Comp. 22, 745 (1968).

[6] H. C. Ku, A. P. Rosenberg and T. D. Taylor, in Proceeding of the Twelth Conference on Numerical

Methods in Fluid Dynamics, K. W. Morton ed., Oxford, England (1990).

[7] H. C. Ku, R. S. Hirsh and T. D. Taylor, J. Comput. Phys., 70,439 (1987).

[8] H. C. Ku, Solution of Flow in Complex Geometries by the Pseudospectral Element Method,

submitted for publication, (1993).

[9] M. C. Thompson and J. H. Ferziger, J. Comput. Phys. 82, 94 (1989).

[10] U. Ghia, K. Ghia and C. A. Shin, J. Comput. Phys 48, 387 (1982).

[11] Visualized Flow, Japan Society of Mechanical Engineers, Pergamon Press (1988).

::: : : js:_:.: :2...........

301

C

A

II

III

D

B

I11 II
Ill J 11

l|l

ill iiII il
Ill 1]

--= !!J !!
, , 111 II

iii II
lli II
III II
J|l ,1

iii

ill.......
iii
!.]!

Fig. 1 Configuration of domain decomposition Fig. 2a Element layout of driven cavity flow
for Re = 100

| III
- i i i
, 111

G--l= t] t-
l • Ill

I
: ill

_ III

_ 1.0 '
II I I lU

_iilll
llJ_ o.s
_tiill
III l lH
_iiill
IIIIIII 0.6
IIIIIII
IIIIIII

i ill o.4
I III
I I II

i Ni 0.++
IIII

!-Ill 0.0 0._ 0.+ 0+ 0+ ,.0

Fig. 2b Element layout of driven cavity flow

for Re = 400

Fig. 3a Streamline plot for Re = 100

302

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3b Streamline plot for Re = 400

u

11.2D

1.5

H
-- = 144
D

W 1

D 2
----+4.5(1-10xa+15x4-6xS); O<x< 1

H

1.5

Fig. 4 Configuration of jet flow

303

304

1.5

&

0.0

0.0 0.5 1.0 1.5

Fig. 5 Streamline plots of jet flow for Re = 250 at time

(a) t = 180, (b) t = 315

N94-2 94
COMPRESSIBLE TURBULENT FLOW SIMULATION WITH A MULTIGRID

MULTIBLOCK METHOD

Hans Kuerten and Bernard Geurts //_ 7Z'_-_
Department of Applied Mathematics

University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

SUMMARY

We describe a multigrid multiblock method for compressible turbulent flow simulations and present

results obtained from calculations on a two-element airfoil. A vertex-based spatial discretization

method and explicit multistage Runge-Kutta time-stepping are used. The slow convergence of a

single grid method makes the multigrid method, which yields a speed up with a factor of about

20, indispensable. The numerical predictions are in good agreement with experimental results. It

is shown that the convergence of the multigrid process depends considerably on the ordering of the

various loops. If the block loop is put inside the stage loop the process converges more rapidly than

if the block loop is situated outside the stage loop in case a three-stage Runge-Kutta method is used.

If a five-stage scheme is used the process does not converge in the latter block ordering. Finally, the

process based on the five-stage method is about 60% more efficient than with the three-stage method,

if the block loop is inside the stage loop.

INTRODUCTION

Numerical simulations of turbulent flow in aerodynamic applications are frequently based on the

Reynolds-averaged Navier-Stokes equations. One of the relevant problems in aeronautics is the pre-

diction of flow quantities in complicated geometries, such as the multi-element airfoil (see figure 1).

The simulation of turbulent flow around such a multi-element airfoil configuration was one of the

Figure 1: Geometry of a two-element airfoil.

applications selected for the compressible flow solver which was developed by our group and NLR

305

as a part of the Dutch ISNaS project [1]. For this application the use of a single-block, boundary-

conforming, structured grid is impossible and one may select either an unstructured grid approach

or a block-structured grid approach. Although the former technique has been successfully applied by

others [2], we selected the block-structured approach in view of the transparent data structure in the

coding, ease of implementation of the turbulence model and a high flexibility with respect to the use

of different physical models in different parts of the computational domain.

In a previous paper [3] it has been shown that for laminar and turbulent flow around a single airfoil

the introduction of the multiblock structure has no influence on the results, with respect to both the

steady-state solution and the convergence rate. Furthermore, invoking the Euler equations instead

of the Navier-Stokes equations in blocks outside the boundary layer appeared to have no significant

influence on the results. In this paper we describe the application of the multiblock concept to

the multi-element airfoil. If the Euler equations are used throughout the computational domain,

a converged steady-state solution is obtained within a reasonable calculation time. However, if the

Reynolds-averaged Navier-Stokes equations are solved in the boundary layers, the rate of convergence

is unacceptably low. Therefore, a multigrid technique was implemented in order to accelerate the

convergence. The resulting gain in calculation time is close to a factor of 20, and the converged

solution is in good agreement with wind-tunnel measurements.

In section 2 the numerical technique, which is based on a combination of a finite volume method

with central spatial differencing and a Runge-Kutta explicit time-stepping method, is described. The

results, both for inviscid and for viscous simulations, are presented in section 3. Finally, in section 4

some conclusions are summarized.

NUMERICAL METHOD

In this section we describe the numerical method used in the flow solver. The two-dimensional,

compressible Navier-Stokes equations can be written in integral form as

0 Udxdy] - Gdx) = (1)

where U represents the vector of dependent variables,

U = [p, P**, P", E] T, (2)

with p the density, u and v the Cartesian velocity components, and E the total energy density.

Further, ft is an arbitrary part of the two-dimensional space with boundary Oft and F and G are

the Cartesian components of the total flux vector. This flux vector consists of two parts: the non-

dissipative or 'convective' part and the dissipative or 'viscous' part, which describes the effects of vis-

cosity and heat conduction, and involves first order spatial derivatives. The Navier-Stokes equations

(1) are averaged over a sufficiently large time interval. Due to the nonlinear terms in the convective

fluxes, the resulting 'Reynolds-averaged Navier-Stokes' equations involve averages of products of two

velocity components. These terms are modeled by a suitable turbulence model. In the present paper

306

the algebraic Baldwin-Lomax turbulence model, in which the unknown terms are modeled by eddy

viscosity terms, is adopted [4].

The discretization of the Navier-Stokes equations follows the method of lines, i.e. the spatial

discretization is performed first, and subsequently the resulting set of ordinary differential equations

is integrated in time, until the steady state solution is approximated. First the computational domain

is divided into blocks and each block is partitioned in quadrilateral cells with the help of a structured,

boundary-conforming grid. The variables are stored in the grid points. A finite volume method is used

in which the integral form of the Navier-Stokes equations is applied to a control volume f_, bounded

by the dashed lines in figure 2. The convective flux through a boundary of this control volume is

W W

i

Figure 2: Control volume in the vertex-based method.

approximated using the value of the convective flux vector in the midpoint of the boundary. The

latter is calculated by averaging over the two neighboring grid points. The viscous flux vector involves

spatial derivatives of the state vector U and is approxima.ted in the corner points of the control volume

with the use of Gauss' theorem on a grid cell. The viscous flux is subsequently calculated using the
trapezoidal rule. This method is called the vertex-based method.

The method of central differencing leads to a decoupling of odd and even grid points and to

oscillations near shock waves. Even in viscous flow calculations the presence of the viscous dissipation

is insufficient to damp these instabilities outside shear layers. Therefore, nonlinear artificial dissipation

is added to the basic numerical scheme. This artificial dissipation consists of two contributions: fourth

order difference terms which prevent odd-even decoupling, and second order difference terms to resolve

shock waves. The second order terms are controlled by a shock sensor, which detects discontinuities

in the pressure. In the present flow solver the artificial dissipation in the boundary layers, where

the viscous dissipation should be dominant, may be reduced by multiplication with the ratio of the

local and free-stream Mach number. The role of the artificial dissipation in relation to the viscous

307

dissipation is discussed in more detail in reference [5].

At the solid wall boundaries the no-slip condition is used. The density and energy density in the

grid points on a solid wall are calculated by solving the corresponding discrete conservation laws,

using the two adjacent cells within the computational domain and their mirror images inside the wall

as the control volume. The values of the density and energy density in the grid points inside the walls

are adjusted such that the adiabatic wall condition is approximated. The boundary conditions at

a (subsonic) far-field boundary are based on characteristic theory. The extent of the computational
domain can be reduced without affecting the accuracy if a vortex is superimposed on the incoming

free stream outside the computational domain [6].

Due to the topology of the two-element airfoil geometry, special points in the computational grid are

unavoidable. The computational grids used contain two special points at block boundaries, where five

cells meet (see figure 4). These points can be treated in an elegant way within the same numerical

scheme, if the dummy vertices outside the 'current' block are defined appropriately. The multi-
valuedness of the variables at the special point, caused by this asymmetric treatment, is eliminated

by taking the average of the five different values after all blocks have been treated. This is sketched

in figure 3.

Figure 3: Control vohlme for a special point.

The system of ordinary differential equations, which results after spatial discretization, is integrated

in time using a time-explicit multistage Runge-Kutta method. In the present flow solver a three-stage

scheme in which the dissipative fluxes (both viscous and artificial) are calculated once per time-step,

and a five-stage scheme in which the dissipative terms are calculated only at the odd stages, are

implemented. With this treatment both calculation time is saved and the stability region of the

method is increased. Extra calculation time is saved by advancing each grid point at the maximum

3O8

local time-stepaccordingto its own stability limit. In this way the evolution from the initial solution
to the steadystate is no longer time accurate,but the steadystate solution obtained is unaffected.

The abovetime-stepping method acts as the relaxation method and coarsegrid operator in the
multigrid solver(seereference[6]). In this solveran initial solutionon the finest grid is obtained with
a full multigrid method. This initial solution is correctedin the FAS-stage,where either V- or W-
cyclescanbe chosen.A fixednumber of pre-and post-relaxationsis performedbeforeturning to the
next coarseror finer grid. The solution is transferredto a coarsergrid by injection, the residualsby
full weighting and the correctionsto the solutionareprolongedby bilinear interpolation. In order to
increasethe smoothingpropertiesof the Runge-Kutta time-steppingtechniquean implicit averaging
of the residualsis appliedwith frozenresidualsat the block boundaries.For mono-blockapplications
this method hasgivensatisfactory resultsfor both two-dimensionaland three-dimensionalflows [5].

In the multi-element airfoil application carehasto be taken in the definition of the residual-vector
in the special points. The proposedtreatment of a specialpoint implies that the control volumeis
different in each of the five blocks wheresucha point is found. In the required averagingthe five
residual-vectorsin a specialpoint are weighedwith their correspondingtime-steps. Without this
weighing the multigrid processcannot convergeto the singlegrid stationary state solution.

In this multigrid, multiblock solver with a multistage time-stepping method there are various
possibilities for intertwining the different loops. In the presentstudy the grid loop is chosenas the
outer loop and the effect of interchanging the block and the stage loop will be studied. Several
'competing' requirementsserveaspossibleguidancefor selectinga specificordering of theseloops.
On the one hand an anticipated parallel processingof the different blocks is more efficient, if the
data transfer between the blocks is kept to a minimum, i.e. with the stage loop inside the block
loop. On the other hand the good convergenceof the muItigrid mono-blocksolvermay be reducedas
the dummy variablesnearthe block boundariesarekept frozenduring more stagesof the time-step.
This would suggestto put the block loop inside the stageloop. In order to study this dilemma we
implementedthesetwo loop ordersin a flexibleway: a singleparameterdetermineswhether the block
loop is situated insideor outside the stageloop.

RESULTS

Description of the test-case

We will present results for a two-component airfoil geometry consisting of the NLR7301 wing

section, from which a flap has been cut out at a deflection angle of 20 ° and with a gap width of 2.6%

chord length [7] (see figure 1). The combination of a Mach number of 0.185 and an angle of incidence

of 60 or 13.1 ° , of which the latter is close to maximum lift conditions, yields subsonic flow. The

Reynolds number based on the chord length of the airfoil is 2.51 × 106. In the viscous calculations

309

the locations of the transition from laminar to turbulent flow are prescribed.

The C-type computational grids (either for inviscid or viscous flow) were constructed by J.J. Benton

from British Aerospace, and are subdivided in 37 blocks (see figure 4). The grid lines are continuous

over block boundaries. Two grids are used: one 'Euler' grid (inviscid) consisting of 16448 cells, and

a 'Navier-Stokes' grid (viscous), which is refined in the boundary layers and wakes and consists of

28288 cells.

Figure 4: Block structure of the computational grid.

For both angles of incidence results from wind-tunnel measurement by Van den Berg [7] are avail-

able, including velocity profiles in the boundary layers and the pressure coefficient on the profile.

Since the flow is attached apart from a small laminar separation bubble near the leading edge of

the wing, the adopted turbulence model should be adequate and yield a useful comparison between

experiment and calculation.

Inviscid Flow

In order to test the flow solver oil the complicated block structure of the two-element airfoil geom-

etry, we considered the relatively simple inviscid flow case, where in all blocks the Euler equations are

solved. In this way problems related to the turbulence model are separated from possible algorithmic

310

problems. The use of the Euler equations implies that the boundary conditions at the solid wall

boundaries have to be changed. For inviscid flow there is only one physical boundary condition of

zero mass flux through the wall. In the vertex based approach the density, the pressure and the

tangential velocity at the wall are approximated by linear extrapolation.

In figure 5 the multigrid convergence behavior of the solver in the 13.1 ° case is shown. The discrete

L_-norm of the residual of the density is plotted as a function of the number of W-cycles. A converged

solution is obtained within a much smaller calculation time when compared to the single grid approach

even though only three different grid levels are available. Both for the single grid and the multigrid

calculations machine accuracy was obtained. The specific block structure nor the treatment of the

special points leads to any specific difficulties. For this inviscid test a comparison with experimental

results is not meaningful and will not be made.

102

10-1

10-4

•_ 10-7

10-1c

10-13
0 50 1O0 150 200 250

W-cycles

Figure 5: Convergence behavior for inviscid flow at an angle of incidence of 13.1 °.

Viscous Flow

We consider the simulations of turbulent, viscous flow and present results for the 6 ° case only.

Single-grid calculations in which only local time-stepping is applied as a convergence acceleration

technique yield a steady-state solution which is in good agreement with the experimental results.

However, in contrast with a fully inviscid simulation, the rate of convergence is very small, and

311

rendersthis method unacceptablefor practical applications. Therefore, as a method to increase
the convergencerate further, the multigrld _echniqueand implicit residual averagingasdescribedin
section2 are indispensable.

In a simulation of turbulent flow at high Reynoldsnumber it is important that the effectsrelated
to the physical dissipationarenot outweighedby thoseof the numericalor artificial dissipation. This
requirement could give rise to difficulties in the presentmultigrid method, sincethe time-stepping
method usedrequiresa certain minimum amount of dissipationfor sufficient smoothingof the large
wave-numbercomponentsof the error (seereference[5]). If the artificial dissipation in the boundary
layer is reducedby scalingwith the ratio of the local and free-streamMach number, i.e. decreasing
the smoothingproperties of the time-steppingmethod, a convergedsolution (engineeringaccuracy)
could beobtainedby increasingthe numberof pre-and post-relaxations.The convergencebehaviorof
this calculation during the FASstageis shownin figure 6, wherethe discreteL_-norm of the residual

of the density is plotted as a function of the number of W-cycles. In the blocks outside the boundary

layers and wakes the Euler equations are solved instead of the Navier-Stokes equations. The good

10 2 .

101

>, 10o
.)==_

,m

10-1

¢,0

¢_ 10-2

10-3

\

I I I I

10-40 50 100 150 200 250 300

W-cycles

Figure 6: Viscous flow at an angle of incidence of 6.0°: convergence behavior

agreement with the wind-tunnel measurements can be inferred from figure 7, where the experimental

and numerically predicted pressure coefficients on the airfoil and flap are shown.

This solution was obtained with the block loop inside tile stage loop of the five-stage Runge-Kutta

time-stepping method. Hence, the variables at the dummy vertices outside a block are updated

after every stage, which implies that the effects of the multiblock structure on the convergence are

kept to a minimum. The frequency of data transfer between the blocks makes this method less

312

i i i i

7

6

5

4

3

2

1

0

-1

-2 0 0'.2 0'.4 016 0'.8 i 112

x/c

Figure 7: Viscous flow at an angle of incidence of 6.0°: comparison of the pressure coefficient on the

airfoil between calculation (solid) and experiment (dashed).

efficient for parallel processing. However, with the block loop outside the stage loop, i.e. with an

update of the dummy variables only after five flux evaluations, a converged solution could not be

obtained. Apparently, the interval between two moments of data transfer between the blocks has to

be sufficiently small in order to obtain a convergent multigrid method.

Further evidence for this statement is obtained from calculations with a three-stage instead of a

five-stage Runge-Kutta time-stepping method. If the block loop is outside the stage loop, the dummy

variables are updated after three flux evaluations. Although the rate of convergence is lower than

in the case with the loops interchanged (see figure 8), the solution has converged within engineering

accuracy after ,-_ 200 W-cycles. A comparison of the three-stage and five-stage schemes with the

block loop inside the stage loop shows that the five-stage scheme is more efficient: about 60 W-cycles

suffice to get the residuals at the same level as with the three-stage scheme after 200 W-cycles. The

five-stage scheme leads to a reduction in calculation time of approximately 60% in this instance.

DISCUSSION

We presented simulation results obtained with a multigrid multiblock method for a two-element

airfoil. Both viscous and inviscid calculations were performed using the same multigrid process

and the same vertex-based spatial discretization method. Moreover, either a three- or a five-stage

313

.,J,

10o

10-1

10-20 5'0 160 150 200

W-cycles

Figure 8: Convergence behavior of the three-stage Runge-Kutta scheme for turbulent flow; comparison

between block loop inside (solid) and outside (dashed) stage loop.

Runge-Kutta scheme was considered for the integration in time and the smoothing properties of this

relaxation method were further enhanced through the introduction of local time-stepping, implicit

residual averaging in which the residuals at the block boundaries were kept fixed to their non-smoothed
values.

The inviscid calculations have shown that a solution which is converged up to machine accuracy can

be obtained with this mnltigrid method. A comparison with the single grid simulation method shows

that a considerable reduction in calculation time was obtained with the multigrid method, although

the convergence of the single grid method for inviscid calculations was already quite acceptable. We

also investigated two different numerical boundary conditions at the solid walls. It appeared that

linear extrapolation of the pressure not only leads to a better convergence than constant extrapolation,

but also gives rise to a much smaller entropy layer around the airfoil. The resulting drag coefficient,

which theoretically should equal zero in this subsonic flow, is reduced by almost 60%.

In the viscous calculations the single grid method was found to yield a well converged result in the

6°-case, however, the convergence towards the steady state solution was extremely slow and makes

the use of a multigrid approach essential. A comparison of the calculation times required in both

methods shows that a total speed-up with a factor of about 20 can be reached. The numerical

predictions obtained for the lift- and pressure coefficients compare well with experimental results

and give confidence in the use of the Baldwin-Lomax model for this application. The convergence

of the multigrid process was studied in detail, showing that the ordering of the various loops in the

314

processhasa considerableeffect.Interchangingthe blockand stageloopsand keepingthe grid loopas
the outer loop, yields an optimal convergencewhen the block loop is put insidethe stageloop. If the
stage loop is put inside the block loop then convergenceof the multigrid processwas absentwhen
using the five-stageRunge-Kutta method as the relaxation method. Apparently, the smoothing of
the relaxation method becomeslesseffectiveasthe number of stagesbetweentwo 'updates' of the
dummy-variables increases.This result hassomelessfavorableconsequencesin view of a possible
parallel processingof the multigrid method. On the onehandparallel processingseemsmoreefficient
if the frequencyof data transfer betweenthe blockscanbe reduced.On the other hand the reduction
of this frequencyresults in a reduction of the convergencerate of the multigrid process,and in some
instanceseven to an absenceof convergence.This suggeststhat in a possibleparallel processingof
this multigrid method, an optimal rate of data-exchangebetweenthe blocksshould be determined.

Acknowledgement

The authorsaregreatly indebted to FransBrandsmafor severalusefuland stimulating discussions.

References

1. Brandsma, F.J.; Vogels,M.E.S.; Van der Vooren, J.; Dijkstra, D.; and Kuerten, J.G.M.: Pre-
designdocumentof the ISNaScompressibleflow simulator. ISNAS-88.04.027,April 1988.

2. Mavriplis, D.J.: Turbulent Flow Calculations using Unstructured and Adaptive Meshes. in
Proceedings of the 12th International Conference on Numerical Methods in Fluid Dynamics,

Oxford, July 9-13 1990, pp. 228-232.

3. Cleurts, B.J.; and Kuerten, H.: Numerical Aspects of a Block Structured Compressible Flow

Solver. g. Engg. Math., vol. 27, 1993, pp. 195-214.

4. Baldwin, B.; and Lomax, H.: Thin layer approximation and algebraic model for separated

turbulent flow. AIAA-78-257, 1978.

5. Kuerten, J.G.M.; Geurts, B.J.; Van der Burg, J.W.; Vreman, A.W.; and Zandbergen, P.J.:

Development and applications of a 3-D compressible Navier-Stokes solver, in Proceedings of

the 13th International Conference on Numerical Methods in Fluid Dynamics, Rome, July 6-10

1992.

6. Radespiel, R.: A cell-vertex multigrid method for the Navier-Stokes equations. NASA-TM-

101557, 1989.

7. Van den Berg, B.: Boundary layer measurements on a two-dimensional wing with flap. NLR-

TR-79009-U, 1979.

315

 94"2 695
A NONCONFORMING MULTIGRID METHOD USING

CONFORMING SUBSPACES"

Chang Ock Lee

Department of Mathematics

University of Wisconsin-Madison

SUMMARY

For second-order elliptic boundary value problems, we develop a nonconforming multigrid

method using the coarser-grid correction on the conforming finite element subspaces. The

convergence proof with an arbitrary number of smoothing steps for Y-cycle is presented.

1. INTRODUCTION

Let fl be a convex polygon in R _. Let f E/}(fl), a E C1(_) and _ • C°(_). We assume there

exists a0 such that a > s0 > 0 and fl > 0. In this paper we discuss convergence properties of the

multigrid method for solving the Dirichlet problem

-V.(aVu)+_u - f in fl, (1)

u = 0 on 0_, (2)

using P1 nonconforming finite elements(see [5, 6]).

The prototype of the multigrid convergence theory is that

For some number of smoothing steps the multigrid process is a contraction for some

norm. Moreover, the contraction number is independent of the mesh size h.

This was proved for conforming multigrid methods by Bank and Dupont[1]. Bra_ess and

Hackbusch[2] and Hackbusch[8] proved this for the Y cycle with one smoothing step. For the

nonconforming multigrid method, this was proved by Braess and Verfi:irth[3] and Brenner[4] for the

W-cycle under the condition that each iteration step contains many smoothing steps.

The method presented in this paper consists of a smoothing step on the nonconforming finite

element space of the finest-grid and correction step which is obtained by the conforming multigrid

*This research was partially supported by the National Science Foundation under Grant No. CDA-
9024618 and DMS-9203502.

PAGE_ INTENTIONALLYB_NK _f 317PRECEDING PAGE BLANK NOT FILMED

method on the conforming finite element subspaces of coarser-grids. The standard nonconforming

muItigrid which was proved by Brenner in [4] is based on smoothings and correction on the

nonconforming finite element spaces. The important difference is that Vk-1 _ Vk and Wk-1 C Vk,

where Vk and Wk are the nonconforming and conforming finite element spaces on mesh level k,

respectively. Hence we can simply use the natural injection for the intergrid transfer of grid
functions and this intergrid transfer operator preserves the energy norm. Moreover, the error of the

coarser-grid correction is orthogonal to Wk-a. Owing to these, the standard proof of convergence in

[2] for the])-cycle of one smoothing step of the conforming multigrid method carries over directly.

In [3] Braess and Verffirth added the step length parameter in the correction step of the standard

nonconforming multigrid algorithm to improve the convergence. They proved the convergence of

two-level case of this modified standard nonconforming multigrid with one smoothing step. The rate

of convergence of their algorithm should be better than or at least equal to that of the standard

nonconforming multigrid method but it needs more cost for each iteration. While Brenner proved

the convergence of the standard nonconforming multigrid algorithm only for the W-cycle it is

convergent for the]) cycle with one smoothing step in real computation. Also the modified

standard nonconforming multigrid algorithm converges for the Y cycle with one smoothing step in

real computation. Our multigrid method is easier to implement and more effective because it needs

fewer computations and communications in a parallel sense. These computations were done in

CM-5 Vector Units t.

This paper is organized as follows. In Section 2 we discuss the fundamental estimates from the

theory of finite elements and the intergrid transfer operator. The multigrid algorithm is discussed
in Section 3. Section 4 contains the contracting properties of the k-level iteration. In the last

section we compare the computational results of three algorithms.

2. THE FINITE ELEMENT SPACES

The variational formulation for (1) and (2) is defined as follows: Find u E H_(_/) such that

a(u,v) = F(v) Vv • Hl(f_),

where

a(u,v) -- fn(c_Vu "Vv ÷ _uv) and F(v) - /_ fv .

Here, H_(_) denotes the usual Sobolev space (see [5]).

Let {Tk}, k >_ i,be a family of triangulationsof n, where T k+1 isobtained by connecting the

midpoints of the edges of the trianglesin T _. Let hA :- maxreT-k diamT, then hA = 2hk+1.

Throughout thispaper, C denotes the positiveconstant independent of k which may vary from

occurence to occurence even in the proof of the same theorem.

?Theseresultsarebased upon a testversionofthe softwarewhere the emphasiswas on providingfunctionality

and the tools necessary to begin testing the CM5 with vector units. This software release has not had the benefit of

optimization or performance tuning and, consequently, is not necessarily representative of the performance of the full
version of this software.

It is worth pointing out the motivation of the nonconforming finite elements. In the stationary

Stokes problem for an incompressible viscous fluid, it is realized that a major difficulty exists in the

numerical treatment of the incompressibility condition. Crouzeix and Raviart in [6] advocated the

method that the incompressibility condition is approximated. They have found it very convenient

to use nonconforming finite elements for this purpose. By Uzawa's method the Stokes equation is

reduced to a sequence of Dirichlet problems for the operator -A. Thus we shall develop a

nonconforming multigrid method for solving (1) and (2).

Now let's define the nonconforming finite element space

Vk := {v : V[T is linear for all T E T k, v is continuous at the midpoints

of the edges and v = 0 at the mid points on Off}.

Note that functions in Vk are not continuous.

We also use a conforming finite element space for our multigrid method NC-CMG. Define

Wk := {w : wit is linear for all T E T k, w is continuous

on ff and w[_f_ = 0}.

The space Vk will be used in the finest-grid space and Wk in the coarser-grid spaces to obtain

NC-CMG. Observe that Wk = Vk n H_(ff) = Ilk t3:Vk+l.

For each k, define (on Vk + H_(f))

ak(u,v) := y_ /T(aVu. Vv+ }3uv)
TET k

and the energy norm induced by ak

jlull,:=x/a,(u,u).
The bilinear form ak(', ") is symmetric and positive definite on Vk. Moreover, we have the inverse
estimate[4]

Ilullk< Ch;lllullL Vu e Vk. (3)
We also note that if u, v E H_(fl), then ak(u, v) = a(u, v).

We now recall some fundamental estimates from the theory of finite elements.

Since f E L2(f), elliptic regularity implies that u e H2(ff)(see [7]). For the same f, let Uk • Vk
satisfy

a_(uk, v) = [fv Vv Vk
Jfl

and let fik • Wk satisfy

ak(fik, V) = 9/_ fv Vv Wk.

Since Vk satisfies the patch test(see [11]), we have the following estimate for the discretization error:

Ilu- ukllL + hkllu-- ukllk Ch llullH (4)

319

(see[6]).The estimatefor the conformingdescretizationerroris, ofcourse,wellknown(see[5]):

Ilu- _kll,.=+ h_,llu- _,11,,-<Ch_,ll,.,ll,=. (5)

From the spectral theory, there exist eigenvalues 0 < ,_1 < ,_ -< "'" <- "_-k and eigenfunctions

¢1, ¢2,..., enk • V_, (¢i,¢j)L_ = 5ij (= the Kronecker delta), such that ak(_bi, v)= .'_i(¢i,V)L 2 for

all v • Vk. From the inverse estimate (3), there exists C > 0 such that

)_, <_ Ch-_ 2. (6)

The same results hold for the conforming finite element spaces. The norm I_vtll,,_ is defined (see [1])

as follows:

Moreover,

1/2 nk

where v=_vi¢i•V_. (7)
i=1

IIIvlllo,,_= IlvllL=and IIIvlUl,k= Ilvllk. (S)

And, the Cauchy-Schwarz inequality implies

lak(v, w)l _<IHvm,+,,,,lllwllt,-,,,,

for any t • R and v, w • Vk.

For v • V_-I the intergrid transfer operator I__x : Vk-i _ Vk is defined as follows. Let p be a

midpoint of a side of a triangle in T k. If p lies in the interior of a triangle in T k-l, then we define

(zL,,,)(p):= v(p).

Otherwise, if p lies on the common edge of two adjacent triangles T1 and T2 in T k-l, then we define

1

(g_lv)(p) := _[vlr,(p)+ vlT_(p)].

From the definition of I__ 1, it is clear that

z2_xv= v w • wk_, = y_ n yk_, c_H_(n).

In other words, I__llwk_ _ is just the natural injection.

Now we are readyto state an approximation property.

Lemma 1 Given u • Vk let u* • W_-I be the solution of

ak(u--u*,v)=O Vv• W/_-I.

Then

Illu- u*lll_.,,-<Chklll_,lll2,,,.

320

Proof. Let g • Vk satisfy

(g,v) = ak(u,v) W e y_.
Then

w • w__,, a_(u*,_) = a_(_,_)= (g,v).
Now let w • H_ (_) be the solution of the Dirichlet problem

-V.(_Vw)+/_w = g in

w = 0 on 0f_.

Then by elliptic regularity Ilwlln2 _<CIIglIL2. It follows from the discretization error estimates (4)

and (5) that

Ilu- _*{IL__ Ilu--wills+ IIw- _*{IL=
< Ch_llwllH=
< Ch=llgll,.=.

(o)
(10)
(11)

But

ligllt_ = (g,g)= a_(u,g)<]llulli2,_llgllL_.

Therefore,

IlgllL_<-II{,-,ll{_,,,.

Combining inverse estimate (3) and (11), we obtain

Illu- u*ll{,,__<_llu - u*{{,_=_<Chlllulll_,k.
/7,

0

3. THE MULTIGRID ALGORITHM

Now, we consider a decreasing sequence of mesh size hk:

h0 > hi > "" > h_ > ... > h_,,..

We first describe the k-level iteration scheme of the conforming multigrid algorithm. The k-level

iteration with initial guess z0 yields CMG(k, z0, G) as a conforming approximate solution to the

following problem.

Find z • Wk such that a_(z,v) = G(v) Yv E Wk, where G • W_.

Here, W_ is the dual space of Wk. For k = 1, CMG(1, z0, G) is the solution obtained from a direct

method. For k > 1, CMG(k, zo, G) = z,_ + I__lq , where the approximation z,_ • Wk is constructed

recursively from the initial guess z0 and the equations

zi = zi-1 + _--_(G- Akzi-1), l <_i <_m.

321

Here,Ak is greater than or equal to the largest eigenvalueof Ak which is the stiffness matrix of a_

in the conforming finite element space Wk, and m is an integer to be determined later. The

coarser-grid correction q E Wk-1 is obtained by applying the (k - 1)-level iteration 1 time. In other

words, it is the])-cycle multigrid method. More precisely,

q = CMG(k - 1, O, G)

where G • W__a is defined by G(v):= G(I__,v) - ak(z_,I__lv) for all v e Wk-1.

The nonconforming multigrid algorithm of this paper is as follows: The/¢m=-level iteration with

initial guess z0 yields NC-CMG(kmax, zo, F) as a nonconforming approximate solution to the

following problem.

Find z • Vk=,. such that

akm,(Z, V)= F(v) = [/v Vv • Vkm,.. (12)

For kmax = 1, NC-CMG(1, z0, F) is the solution obtained from a direct method.

For kin,, > 1,

Smoothing Step: the approximation zm • Vk is constructed recursively from the initial guess z0

and the equations
'1

= zi-1 "+ A_.(F- Akm,,zi-1), 1 < i < m. (13)Zi

Here, Akin,. is greater than or equal to the largest eigenvalue of Akin,,, which is the stiffness

matrix of akin,, in the nonconforming finite element space Vkm,..

Correction Step: The coarser-grid correction q • Wk-1 is obtained by applying the (kmax - 1)-level

conforming iteration 1 time. More precisely,

q = CMG(km_,, - 1,O,F)

where $' • W_m,._ 1 is defined by F(v):= F(I__lv) - ak(Zr_,I__lV) for all v • We-1.

Put

NC-CMG(km_,_, zo, F) = z_ + I_2::_lq.

322

4. ESTIMATE OF CONVERGENCE RATE

Now, we can proceed with the well-known analysis of the conforming multigrid method in [2].

Define the linear mapping J : Vk --_ V_ by

Jw=_i vi(1-_ _: ¢, forw = _E_,¢, .
i

Here Ai's are the eigenvalues of ak. The smoothing step (13) amplifies the error ei = z - zi by J, i.e.,

ei = Jei-1. Note that J is a self adjoint and semidefinite operator with respect to the energy norm.

Define the weaker seminorm

_max _ for w=_i¢i.
i

From (7) and (8) we know I[w[[_ = E Aiu_ and [w I < [[w[[k. Define the ratio

{ I_l_lllmlll if w ¢ O,p(w) := 0 ifw=O

It can be regarded as a measure for the smoothness of w E Vk because for a smooth function the

coefficient _'i for small Ai's dominate and [w[_ [[w[[_.

Lemma 2 Given w E Vk put p = p(Jraw). Then

llJrawllk< Prallwllk"

Proof. Similar to the proof of Lemma 4.3. in [2]. [:]

Let q (E Wk-1) be the exact coarser-grid correction i.e.

ak_l(q, V)"-- r(v)- ak(Zra, V)

Define

Vv e Wk__.

Qe m :'-- era --

Then Q is the ak-orthogonal projector from Vk into WkZl. Note that _ is ak-orthogonal projection
of era into Wk-l.

Lemma 3 Given w E Vk we have

111Qw [[[1,k< min {1, C _/1 -p (w)} [[[w [[[x,k•

323

Proof. For w = I: vi¢_, we have

lllwlll_,k-Iwl2
i

1 IIIwlll_,_._ i
Amax

It follows from Lemma 1 that IllQwllll,k_ Chlllwlll2,_ This and the estimate (6) for Am= imply

IIIQwlIIL,< Ch2_',-,,(lll"-'lll_,_-I_12)
<__C(llwHl[,k-I_?)
= C(1- #(w))lll_lll_,k-

Moreover, since Q is an orthogonal projector, we have

IIIQwlll_,k __ rain {1,0¢ -- p(w)} lUwlU_,k.
0

We are now (as in [10]) in a position to define three multigrid iterative schemes for the solution

of(12).

1. the symmetric scheme NC-CMGVk: symmetric smoothing NC-CMG scheme

2. the coarse-to-fine cycle NC-CMG/k: postsmoothing NC-CMG scheme

3. the fine-to-coarse cycle: NC-CMG_k: our NC-CMG scheme.

%

In particular, we have[10]
IINC-CMG / kllk = IINC-CMG\kll k ,

IIgC-CMGVkllk= IINC-CMG\klI_.

The symmetrical method NC-CMGV enables us to use estimates with respect to the energy norm

and to apply a duality argument.

Lemma 4 The multigrid algorithm NC-CMGVk has a convergence factor

IINC-CMGVklIk < max p2m{e + (1- e)rain(l, C[1- p])},
- 0<p<l

with respect to the energy norm. e is the error in (k - 1)-level CMGVk-1 and the constant C is

independent of k and m.

(14)

324

We note that the right-hand sideof (14) isa monotone function of e due to the cut-offinduced

by the rnin-operationwhich iscontained in the expression.

Proof.

z.., = z.. +, + ew' (i.e.IIq- *Ilk-<ellqllk)
with some w' E Wk-x. Hence the error is

em+l =em -- *- _W t = Qem - ,w t,

Since Qem is orthogonal to Wk-1 and w _ E Wk-l, we get

IIQe_- w'll_ = IIQe.,II_+ IWlll< IIQe.,II_+ It*Ilk

< IIQe_,ll_+ I[(Z- Q)e_ll_= II_ll_,

In order to estimate the final error e2m+l = J'mem+l, we use a duality argument:

Ile2_+ll]k = supea(dJ, e2_+l)/[[wllk. Note that (16), Q2 = Q and Cauchy-Schwarz's inequality
imply

ak(_,e2_+,) = ak(_, S'(Qe_- ,_'))
= ak(S"_, (1- _)@e_+ 4Qe_,- _'))
_< (1 - e)ak(JmCv, Q2e,n) + _llS'_tlklle,,llk

_< (1- _)llQS'_llkllQS"%llk+ ,llS'_llklIs'eollk
_< [(1 - e)llQS'_ll_, + ellJ'_,ll_]'/2[(1 - e)llQY'%oll_,+ ellJ'eoll_] _/2.

Given w E Vk by the Lemmas 2 and 3 it follows that

(1 - e)llQJ'wll_, + _llS_wll_, _< p_'{e + (1 - e) min(1, C[1 - p])}llwll_,,

where p = p(J'nw). Hence

Ile2,,+allk < max p="{_ + (1 - e)min(1, C[1 - p])}[[eol]k. 0
-- 0_<p<l

(15)

(16)

Theorem 5 If IICMG\k-_IIk-1 < _,/2 where c < 6 < 1, then

IINC_MG\klIk < 61/2•

Proof. We conclude from Lemma 4,

]]NC-CMGVkHk = max p2"_{6 + (1 -6)min(1, ell - p])}
0_<p<l

because IICMGVk-IIIk-_ = IICMG\k-IlI_ _ < *. Maximum 6 is attained at p = 1 when 6 > c

IINC-CMC\klIk = [INC-CMGVklI_/2< 61/2 • 17

325

Table I: Number of Grid = 8 i.e. h = 1/8

smoothing

1

2

3

4

S- NCMG M- NCMG NC-CMG

iter time(sec i ter time(sec) iter time(sec)

4 .909 3 .788 3 .233

3 .689 2 .523 2 .156

2 .471 2 .540 2 .170

2 .483 2 .549 2 .177

Since the conforming multigrid method with the])-cycle and arbitrary smoothing step is convergent

c and IICMG\k-lllk-1 < 61/2we can choose _ such that 1 > 6 > _ _ •

5. EXPERIMENTAL RESULTS

We implement the standard nonconforming multigrid algorithm ,.q-NCMG in [4], the modified

standard nonconforming multigrid algorithm M-NCMG in [3] and NC-CMG with the Y-cycle for

the Laplace's equation

--Au = --1 in f/= unit square,

u = 0 on 0f_.

Let {¢k,..., ¢_k} be the basis of Vk such that each ¢_ equals 1 at exactly one midpoint and equals
0 at all other midpoints. The stiffness matrix representing ak(', ") with respect to this basis of

nonconforming space has at most five entries per row. In the conforming case, the stiffness matrix

has again at most five entries per row. Therefore z,_ can be obtained from z0 by iterating a sparse

band matrix. We use the Gershgorin theorem in order to get the bounds of the maximum

eigenvalues. These are the rough bounds so that the convergence rate is not optimal, but there is a

trade-off because finding the exact maximum eigenvalue costs more. Note that the matrix for Ikl

has again at most five entries per row.

We take an initial guess z0 = 0. The programs execute the multigrid iterations until the discrete

energy norm of the real error is below the tolerance 1/(number of basis) for various mesh size and

the number of smoothing. The real solution comes from the SSOR preconditioning conjugate

gradient method for the five point finite difference scheme in which the difference of two consecutive
solutions is less than the tolerance 10 -9 in the descrete/2 sense. The experiments reported here

were run in double-precision arithmetic on CM-5 Vector Units which has 32K processors.

There are many ways to measure the performance of a parallel algorithm running on a parallel

processor(see [9]). The most important and commonly used metric is the elapsed cpu time to run a

job on a given machine even though it depends on how to optimize the program. We used the

power method to get the rate of convergence. In the Table V-VIII the rate of convergence of

S-NCMG and M-NCMG is slightly smaller or larger than the rate of convergence of NC-CMG.

326

Table II: Number of Grid = 16 i.e. h = 1/16

S- NCMG M- NCMG NC-CMG

smoothing iter time(sec iter time(sec) iter time(sec)

1 7 2.604 5 2.089 5 .766

2 4 1.526 3 1.187 3 .481

3 3 1.183 3 1.247 3 .512

4 3 1.212 3 1.240 2 .360

Table IIh Number of Grid = 32 i.e. h = 1/32

S-NCMG M-NCMG NC-CMG

smoothing iter time(sec iter time(sec) iter time(sec)

1 I0 6.037 7 4.294 7 1.625

2 6 3.723 5 3.163 4 .970

3 5 3.196 4 2.573 4 1.034

4 4 2.641 3 1.975 3 .832

Table IV: Number of Grid = 64 i.e: h = 1/64

smoothing

2

S- NCMG M- NCMG NC-CMG

iter time(sec

14 16.668

8 9.560

6 7.196

5 6.200

iter time(sec iter time(sec

10 11.879 9 2.874

7 8.396 5 1.692

5 6.059 4 1.447

4 4.987 4 1.544

Table V: Number of Grid = 8 i.e. h = 1/8

smoothing

1

2

3

4

S-NCMG M-NCMG NC-CMG

rate of conv. rate of conv. rate of conv.

.903 .903 .906

.815 .815 .820

.736 .736 .742

.665 .665 .672

327

Table VI: Number of Grid = 16 i.e. h = 1/16

S-NCMG M-NCMG NC-CMG

smoothing rate of conv. rate of conv.

1 .904 .904 .910

2 .817 .818 .829

3 .739 .739 .754

4 .668 .669 .687

rate of conv.

Table VII: Number of Grid = 32 i.e. h = 1/32

S- NCMG M- NCMG NC-CMG

smoothing rate of cony. rate of cony. rate of cony.

1 .904 .904 .911

2 .818 .818

3 .740

4 .669

.830

.740 .757

.669 .689

Table VIII: Number of Grid = 64 i.e. h = 1/64

S-NCMG M-NCMG NC-CMG

smoothing rate of conv. rate ofconv.

1 .904 .904 .911

2 .939 .818 .830

3 .888 .740 .757

4 .773 .669 .690

rate of cony.

328

(A) (B)

Figure 1: Nonconforming vs. conforming.

In Figure 1, (A) and (B) represent the location of the nodal basis of nonconforming finite

elements and conforming finite elements, respectively. Squares represent the basis in Vk-1 or Wk-1

and circles represent the basis in V_ or Wk. In the correction step the centered black square is

communicating with the black circles around it. Therefore S-NCMG and M-NCMG need further

communications. Since the performance is determined mainly by the communication time in a

massively parallel machine like CM-5, S-NCMG and M-NCMG require more cpu time than

NC-CMG. It is shown in tables I-IV. Moreover NC-CMG does less computation and is easier to

implement because the number of the basis of V_ is approximately three times of that of W_ and

Wk-I C- Wk .

Acknowledgements. I would like to thank Professor S. V. Parter for his advice.

REFERENCES

1. Bank, R. E.; and Dupont, T.: An optimal order process for solving finite element equations.

Math. Comp., vol. 36, 1981, pp. 35-51.

2. Braess, D.; and Hackbusch, W.: A new convergence proof for the multigrid including the

V-cycle. SIAM J. Numer. Anal., vol. 20, 1983, pp. 967-975.

3. Braess, D.; and Verffirth, R.: Multigrid methods for nonconforming finite element methods.

SIAM J. Numer. Anal., vol. 27, 1990, pp. 979-986.

4. Brenner, S.: An optimal-order multigrid method for P1 nonconforming finite elements. Math.

Comp., vol. 52, 1989, pp. 1-15.

5. Ciarlet, P.: The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.

6. Crouzeix, M.; and Raviart, P.-A.: Conforming and nonconforming finite element methods for

solving the stationary Stokes equations I. RAIRO Anal. Num_r. S_r. Rouge, vol. 7, No. R-3,

1973, pp. 33-75.

329

.

,

,

10.

11.

Grisvard, P.: Behavior of solutions of an elliptic boundary value problem in polygonal or

polyhedral domains. Numerical solution of partial differential equations-IiI (Synspade 1975)

(B. Hubbard ed.), Academic Press, New York, 1976, pp. 207-274.

Hackbusch, W.: Multi-grid convergence theory. Multigrid Methods, Lecture Notes in Math.,

vol. 960 (W. Hackbusch and U. Trottenberg, eds.), Springer-Verlag, Berlin and New York,

1982, pp. 1-176.

Karp, H.; and Flatt, H.: Measuring parallel processor performance. Comm. ACM, vol. 33,

1990, pp. 539-543.

McCormick, S.: Multigrid methods for variational problems: Further results. SIAM J.

Numer. Anal., vol. 21, 1984, pp. 255-263.

Strang, G.; and Fix, G.: An analysis of the finite element method, Prentice-Hall, Englewood

Cliffs, N.J., 1973.

33O

N94:2 696
MULTIGRID METHOD FOR INTEGRAL EQUATIONS

AND AUTOMATIC PROGRAMS

Hosae Lee

Department of Mathematics

Murray State University

Murray, KY 42071

5-e3"- t j

/ 7/sD
P. /.3

SUMMARY

Several iterative algorithms based on multigrid methods are introduced for solving linear

Fredholm integral equations of the second kind. Automatic programs based on these algorithms

are introduced using Simpson's rule and the piecewise Gaussian rule for the numerical

integration.

INTRODUCTION

Several multigrid iteratlve methods based on the NystrSm method are applied for the fast

solution of the large dense systems of equations that arise from the discretization of Fredholm

integral equations of the second kind. We will consider the linear Fredholm integral equation of

the second kind,

Jn k(s,t)x(t)dt = y(s), s e D (1)Ax(s)

with D a bounded close domain, and yC X where X is the underlying Banach space. Necessary

assumptions are

(i) k(s, t) is such that the associated integral operator K is compact from X into X

(ii))t is not an eigenvalue of K and A -/0

The Nystrgm method for solving (1) uses some type of numerical integration to obtain the

approximating equation

nl

)_xt(s) - __, aj(s)xt(tj) = y(s), s • D (2)
j=l

the nodes tl, t2, , t,_, are in D, and xt(t) - x(t). The weights aj(s) can be defined in a variety of

ways, depending on the smoothness and form of the kernel function. If k(s, t) and x(t) are

reasonably smooth, usually aj(s) = wjk(s, tj), where

331

n

fD f(t)dt ._ _ wjf(tj)
j=l

is a numerical integration formula. Let the numerical integration operator h'l be defined by

nl

Ktx(s) = __. wjk(s, tj)x(tj), s • D
j=l

Using (2) and (4), (1) approximated by the linear system

nt

)_xt(t,) - _ wj k(t,, t j)xt(t j) = y(tl)
j=l

We will denote (1) and (5) symbolically as

(_ - K)x = y

and

(_ - Kt)xl = y

respectively. Our discussion is based on the convergence of a sequence of approximations to the

unique solution of (1).

In finding numerical solutions for equations (1), the system (5) is too large to be solved

directly. The purpose of this paper is to consider some iterative variants of (4). The basic

assumptions needed in our algorithms are given in section 2. In section 3, linear iterative

algorithms are given based on Simpson's rule and piecewise Gaussian quadrature rule for the

numerical integraion formulae. And in the section 4, we include numerical examples.

(3)

(4)

(5)

(6)

(7)

BASIC ASSUMPTIONS

The methods will be defined and discussed Using the abstract formulation of Anselone [1] and

Atkinson [3], [4] for families of collectively compact operators.

Let xl, l = o, 1,2...,be finite-dimensional subspaces of the Banach space X and let

Pl, l = 0, 1,2, ..., be a bounded projection operator from X onto Xt. We need the following

assumptions for {Xt} and {Pl}

(A1) X0 C X_ C C Xt... C X

(A2) _im llf- P*fll 0 for all f • X

332

The sequence{X_} is thought asbeingassociatedwith a sequenceof decreasing meshsizes {ht}

with lim ht = 0. Corresponding with this sequence {ht},we approximate K by a sequence of
1--+oo

operators {Kl}, Kl : X --+ X. In multigrid iteration, the subscript I is called "level".The

hypotheses on {Kt : l >_ 1} and K are as follows.

(A3) K and Kl, l _> 1 are linear operators on the Banach space X into X.

(A4) Ktx _ Kx as n --+ oo, for all x C X.

(A4) {Kt} is a collectively compact family of operators.

The following is a consequence of the assumptions (A3)- (A5):

Lemma 1 Assume (,43) - (A5). Then with n defined as in (3)

(i) K is compact

(ii) II(K - K,)KI[and II(K - I*'t)I*'tll eonvfrge to zero as n --_ oo

(iii) (fat = sup sup I1(I(- Km)K,_II , then lim at = 0
m>/ n>l l---_oo

Proof. See Atkinson [4].

Lemma 2 If (A - K) -1 exists, then

(A - Kt) -1 exists for sufficiently large I; say N(A), and is uniformly bounded by c2(A) and

IIx- x ll c2(x)IIKm- K xll, l > N(A)

where xt =- (A - Kt)-ly

Proof. See Atkinson [4].

This shows xt ---* x and gives a rate of convergence.

LINEAR ITERATIVE METHODS

Multigrid Methods

Assume that Xt,o denotes a approximate solution of (7) with residual

dt = Yt - (A - Kt)xt,o

Then improve on the accuracy by writing

xt,1 = Xt,o + 51

where the correction 5t satisfies the residual correction equation

(8)

(9)

333

(_ - K,)_, = d, (lO)

In general, thecorrection term _t will be small, and it is unnecessary to solve the residual

correction equation (10) exactly. Thus we may write

,5_= B_dt (11)

where B_ denotes a bounded linear operator approximating (A - K_)-'. By (??) and (9) together

with (11), we obtain

xt,1 = [A - Bt(A - Kl)lxt,0 + Btyt (12)

as the new approximate solution to (7). The equation (11) can be represented well by means of

coarser grid functions

(,,_ -- I(l_l)_l_ 1 = dl_ 1 (13)

where dt_lis chosen reasonably and depends li.nearly on all. If r : Xl _ Xz-1 is the restriction

mapping, then

dl-1 = rdl (14)

Having defined dt_lby (14), 6t-a is obtained using (11) at level l- 1. Having obtained 5t__which

is defined only on the coarse grid level, we need to interpolate this coarse-grid function by

_t = Pgt-1 (15)

where p describes the prolongation of a coarse grid function to a fine grid function.

We note here that the choice of the prolongation p in (15) must be small enough to satisfy

III- prll < C h_ (16)

where the consistency order r depends on the discretization. (e.g. on the order of the quadrature

formula). For the restriction operator r, we will consider both trivial injection and Nystrom type

restriction.

Our automatic algorithm is based on the following multigrid iteration which is given as a

recursive procedure.

Multigrid iteration for solving (A - Kt)xi = y

Procedure Multigrid (l, xt, y)

if I = 0 then

solve Xo = (A - I(t)-ly

otherwise

(17)

334

= + y]
dr= (I- K_)_- y

dt-1 = rdt

repeat the Procedure Mu]tigrid with (I- l,6t-x,dr-,)

x'}_'_= xt - p6t-a

We now give some basic results of the multigrid algorithm (17) that are used in our automatic

algorithm.

Let (k be the contraction number of the multigrid iteration employed at level k

Then it is known that {{k} are uniformly bounded by some (< 1.

(18)

Let

(:= max (k (19)
l<k<l

where I is the maximum level in (17). The relative discretization error, the difference between xk

and xk-1, is often estimated by

II_xk-, - xkll _ C,hZ
for l <k<l

where/5 is a prolongation operator and r is the consistency order.

(20)

Theorem 3 Assume (20) and

with

C2¢ i < 1

C2 := max [hk-']"
1<,,<,

then the i th iteration of the multigrid procedure (i7) at level k results in kk and satisfies the

error estimate

where

II_k-- xkll _ C3C,hkr
for O<k<l

Ca-
1 - C2(i

(21)

(22)

(23)

335

Proof. SeeHackbush [11].

h,__< X then the i th iteration of theTheorem 4 Assume the validity of (22) and suppose _ _

multigrid procedure (17) at level k results in kk satisfies the error estimate

tl k - xkll C4Ilxk- xlt

where

(24)

Proof. See Hackbush [11].

C_ 4 -- (2r -- 1)(i (25)

- 1 - C2(i

Automatic Algorithms

The automatic algorithm (k in (18) is used to estimate the iteration error. Then together

with the discretization error the global error in the solution is estimated. Often (k is estimated by

(26)

Then

I 11- : (27)

is used to estimate the iteration error. Thus at any level, a minimum of two iteration is required

to estimate the iteration error. However, (24) together with (25) can be used to estimate C using

iteration error

C4 "= discretization error

and it will enable us to estimate (27) with only one iteration.

(28)

our first algorithm is based on Simpson's rule with double the node points as the level

increases, i.e. dimension of the linear system at a level l is 2 t+l + 1. In this case we have C2 = 16

in (21). Thus by the condition (21), if (< _ the estimates in (22) holds with i=l, i.e. only one

mUltigrid iteration per level. The result is 'computational savings. As the level increases the

amount of computation increases, so that there is a significant time savings in performing only one

iteration as the dimension of the linear system being solved becomes larger. Moreover (k in (18)

goes to zero as the level k increases, which means that after a certain level k, (k becomes so small

that the iteration error becomes much less significant than the discretization error, hence more

accurate estimation of it is not needed. Thus one iteration is sufficient at this stage.

336

The second algorithm is based on the piecewise Gaussian quadrature rule for the numerical

integration scheme. We adapt the iteration error estimation scheme discussed earlier.

For simplicity we use hi = _ for l = 1,2,... This means that we reduce the length of each

subinterval by half as the level increases. Suppose at some level l, we have a partition

Qt = {a = q0 < ql < < q,_, = b} (29)

with

qi=a+i.hl for i=0,1,2,...,m_

and ml = 2 t :=number of subintervals, for l = 0, 1,2,

Then

where

ml p

fbf(t)dt - ___hi ___ff,j f(qi-a + hi[j)
i=1 j=l

(30)

P

/o' f(t)dt - E _oj f(tj)
j=l

is the Gaussian quadrature rule on [0,1] with p node points.

(31)

Unlike Simpson's rule, we do not have nested node points. In the following algorithm, both

restriction and prolongation are done with NystrSm type interpolation.

Procedure Multigrid with piecewise Gaussian (I, xt, y)

if I = 0 then

solve Xo = (A - Ko)-ly

otherwise

1 _"._t = -f[I(,x_ + y]

d_ = (_ - Iit)et - y = I(_xt - I(t]:_

d_-i = r(Klxt - Kjcl)

repeat the Procedure Multigrid with (l - 1,51-1, dl-1)

x_ ew = Xl -- pSI-1

(32)

NystrSm type interpolations as in the procedure (32) are costly. Each interpolation involves

O(n_) multiplications at each level. However this can be improved as suggested in our conclusion
later.

The following theorem which is due to Atkinson-Potra [7] gives the theoretical iterative rate of

convergence for piecewise Gaussian quadrature with Nystrgm type interpolation. We will assume

337

that the kernel k(s, t) belongs to the class G(a, 7). This means that the kernel k(s, t) has the

following properties:

(G1) Define
• , = {(s,t) Ia < s < t < b)
% = {(s,t) I. < t < s _<b}

Then there are functions ki E C_(_i), i = 1,2

with

k(s,t) =kl(s,t), (s,t) e II/1, t ¢ S

k(s,t) =k2(s,t), (s,t) e _2

(G2) If'y>O, thenk(s,t) EC_([a,b]x[a,b]).IfT=-l, thenthekernelk(s,t) maY haven

discontinuity of the first kind along the line t = s

Theorem 5 Assume that k(s,t) E G(a,7). Then solve the NystrSm equation

N

x,(s) = _w,k(s,tj)x,(tj) + y(s)
j=l

using piecewise Gaussian quadrature rule with p node points in subintervals by .first

obtainning xt(tl), , xt(tg) as a solution of the linear system

(33)

N

x,(t,) = _, wjk(ti,tj)xt(tj) + y(ti)
j=l

then using (33) as an iterpolation formula gives an error estimate

(34)

fix= x,II= O(h__) (35)

where w = min{oq 2p, 7 + 2}.

Proof. See Atkinson-Potra [7] for the case p=r+l.

Finally to determine i, the needed number of iteration at any level I, use (24) and (25) with

r = 2p,hence (72 = 22p.

Automatic Implementation

Our automatic implementation is divided into two stages based on the results from the

iteration method. In stage 1, (_ - Km)x,_ = y is solved directly, and then an attempt is made to

solve ()_ - Kt)xt = y for l > rn, iteratively. If the rate of convergence is sufficiently rapid then

the stage 2 is entered. Otherwise m is replaced by l and the stage 1 is repeated. In stage 2, the
value of m will serve as the coarsest grid level in the multigrid procedure (17) and solve

(_ - I(l)xl = y iteratively until termination of the algorithm. The iteration procedure attempts to
use the minimum number of iterates such that once the iterative solutions satisfy a certain criteria

338

we will try to estimate the rate of convergence asymptotically, which enables the estimation of the

rate of convergence with only one iteration per level. As shown in our numerical examples, this

scheme results in computational savings at finer grid levels.

The initial guess for an iteration of the higher level is the interpolation of the solution of the

preceding level which may have been obtained either directly or iteratively. The error IIx - xml[

and]Ix - xlll in stages 1 and 2, respectively, are monitored continuously, regardless of whether the

iteration method is being used or not. Thus the multigrid iteration may not have been invoked

successfully before the attainment of an answer within the desired error tolerance.

In order to estimate the global error in the current solution, we need to monitor the

discretization error and the iteration error. For the iteration error estimation, (27) is used with

estimated _ in place of _k. In stage l, a test is made to determine whether the speed of

convergence is sufficient to enter stage 2. If

(_< [Ratio]'/2 (36)

then the speed of convergence is adequate for stage 2. This requirment will usually insure that

only two iterates are needed to be calculated in stage 2 at any given level. The number Ratio is

the theoretical rate at which the error in xl should decrease when I is increased to the next level.

In our case, since we are doubling the node points as the level increases, Ratio = _ with r = 4

for Simpson's rule and r = 2p for p points piecewise Gaussian quadrature in each subinterval.

For the discretization error estimation, we compute the rate at which the error is decreasing

for the current level. For each computed level l,

NumDE :--IIx,- Xl-lll

and let DenDE be the previous value of NumDE, if any. Then the rate is computed using

(37)

NumDE
DE.-

DenDE

Using this value of DE, we estimate the error x - xt,

(38)

Error:= [1 DEE] NumDE (39)

which is a standard error estimate for sequences which are converging geometrically with a rate

DE. Having estimated Error as in (39), we use the final test

Error _<

with c a desired error tolerance supplied by the user.

(40)

To ensure that only needed accuracy in xt is computed, we want to test

iteration error _ quadrature error (41)

339

This is done by

The test (42) is obtained by using (41) and the approximations

If the test (42) is not satisfied,then the newiterate is calculated,and (42) is tested again.
Oncean iterate is acceptableaccordingto (42), wecheckfor accuracyin the most recently
computediterate using (39) and (40).

NUMERICAL EXAMPLES

The integral equation

is solvedwith the kernel

j_a bze(s) - A k(s,t)x(t)dt = y(s), a < 8 < b (45)

k(s,t) = cos(_t)

on [0,1]. A variety of parameters A that are close to the dominant characteristic values (the

reciprocals of eigenvalues) are considered, as the equation becomes more difficult to solve as A

approaches characteristic values. The dominant characteristic value that we use in our example is

1.4278. The right hand function y(s) is so chosen that

x(s)=e *cos(7s), O_<s___ 1 (46)

Table I. The First Algorithm

Dimension (Level)

A Desired Estimated Actual Coarsest Finest

1.00 1.0E-6 6.82E-7 6.76E-7 3 (0) 65 (5)

1.40 1.0E-4 1.62E-5 1.60E-5 5 (1) 65 (5)

1.43 1.0E-4 1.31E-5 1.31E-5 5 (1) 129 (6)

340

In Table I, the Estimated columnis computedusing (39). As)t approaches the characteristic

value of 1.4278, both the coarsest grid level and the finest grid level were increased. In Table II,

we give the iterative rate of convergence at each level, and the number of iterations performed at

each level is also given in parentheses. As noted in section 3, only one iteration is needed as the

level increases. Whenever only one iteration is performed at any given level, the iterative rate of

convergence is the maximum contraction number (in (19) estimated using (24) and (25).

Table II. Iterative Rate of Convergence of The First Algorithm

Level

A Desired 1 2 3

1.00 1.0E-6 2.10E-2 (2) 5.14E-2 (1) 2.03E-3 (1)

1.40 1.0E-4 2.10E-1 (2) 5.31E-2 (2) 7.57E-3 (2)

1.43 1.0E-4 1.44E-1 (2) 1.44E-2 (2)
4 5 6

1.00 1.0E-6 3.40E-3 (1) 3.80E-3 (1)

1.40 1.0E-4 5.93E-2 (1) 3.79E-3 (1) -

1.43 1.0E-4 4.40E-2 (1) 3.75E-3 (1) 3.89E-3 (1)

For the second algorithm, the coarsest level corresponds to two subintervals. In order to give a

reasonable comparison with the first algorithm, we first give the results with 2 node points in each

subinterval. Thus the quadrature order coincides with that of the first algorithm.

Table III. The Second Algorithm with p=2

A
Dimension (Level)

Desired Estimated Actual Coarsest Finest

1.00 1.0E-6 6.82E-7 6.76E-7 4 (0) 64 (5)

1.40 1.0E-4 1.62E-5 1.60E-5 4 (0) 64 (5)

1.43 1.0E-5 8.74E-6 8.72E-6 4 (0) 128 (6)

In the next table, we have results from the second algorithm with more node points on each

subinterval. To show the superiority of the Gaussian quadrature rule, we give results for a smaller
desired error for A = 1.40 and)_ = 1.43.

Table IV. The Second Algorithm with p=3,4

341

Dimension(Level)

)_ p Desired Estimated Actual Coarsest Finest

1140 3 1.0E-8 1.95E-9 1.93E-9 6 (0) 96 (4)

1.43 3 1.0E-8 3.97E-10 3.96E-10 6 (0) I92 (5)

1.43 4 1.0E-8 6.52E-10 6.28E-10 8 (0) 64 (3)

Table V. Iterative Rate of Convergence of The Second Algoritm with p=3, 4

Level

,k p Desired 1 2 3

1.40 3 1.0E-8 1.09E-4 (2) 1.43E-6 (1) 8.84E-4 (1)

1.43 3 1.0E-8 1.39E-3 (2) 1.04E-2 (1) 2.10E-4 (1)

1.43 4 1.0E-8 9.35E-6 (2) 2.55E-3 (1) 1.30E-5 (1)
4 5

1.40 3 1.0E-8 9.90E-4 (1)

1.43 3 1.0E-8 2.36E-4 (1) 2.42E-4 (1)

1.43 4 1.0E-8

CONCLUSION

The piecewise Gaussian rule is superior to Simpson's rule. However, as pointed out in section

3, restrictions and prolongations are done with NystrSm type interpolation. And it involves O(n])

multiplications at each level l without counting kernel evaluations. It appears that these

operations cause the bottleneck of our algorithms. We are in the process of applying the idea

suggested by Achi Bran& in [9] to our current algorithms which will reduce the operation count

by far. Our preliminary results appear to be promising, and progress is being made in developing

them further.

REFERENCES

1. Anselone, P.M.: Collectively Compact Operator Approximation Theory, Prentice-Hall,

1971.

2. Atkinson, K.E.: The Numerical Solution of FredholmIntegral Equations of the Second Kind.

SIAM J. Numer. Anal., Vol. 4, 1967, pp. 337-348.

3. Atkinson, K.E.: Iterative Variants Of the NystrSm Method for the Numerical Solution of

Integral Equations. Numer. Math., Vol. 22, 1973, pp. 17-31.

342

4. Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholrn Integral

Equations of the Second Kind, SIAM, 1976.

5. Atkinson, K.E.; and Potra, F.A.: Projection and Iterative Projection Methods for Nonlinear

Integral Equations, SIAM J. Numer. Anal., Vol. 20, 1987, pp. 1352-1373.

6. Atkinson, K.E.; and Potra, F.A.: The Discrete Galerkin Method for Nonlinear Integral

Equations. J. Intgeral Eqns. and Appl., Vo]. 1, no. 1, 1988, pp. 17-54.

7. Atkinson, K.E.; and Potra, F.A.: On the Discrete Galerkin Method for Fredholm Integral

Equations of the Second Kind, IMA J. Numer. Anal., Vol. 9, 1989, pp. 385-403.

8. Brandt, A.: Multi-level Adaptive Solutions to Boundary-value Problems. Math. Comp., Vol.

31, 1977, pp. 333-390.

9. Brandt, A.: Multilevel Computations of Integral Transforms and Particle Interaction with

Oscillatory Kernels. Comp. Phy. Comm., Vol. 65, 1991, pp. 24-38.

10. Chatelin, F.; and Lebbar, R.: Superconvergence Results for the Iterated Projection Method

Applied to Fredholm Integral Equations of the Second Kind and the Corresponding

Eigenvalue Problems, J. Int. Eqns. Vol. 6, 1984, pp. 71-91.

l l. Hackbush, W.: MultigridMethods and Applications, Springer-Verlag, 1985.

12. Hemker, P.W.; and Schippers, H.: Multiple Grid Method for the Solution of Fredholm

Integral Equations of the Second Kind. Math. Comp., Vol. 36, 1981, pp. 215-232.

13. Hashimoto, M.: A Method of Solving Large Matrix Equations Reduced From Fredholm

Integral Equations of the Second Kind. J. Assoc. Comp. Mach., Vol. 17, 1970, pp. 629-636.

14. Kantorovich, L.; and Akilov, G.: Functional Analysis in Normed Spaces, Pergamon Press,

1964.

15. Kress, R.: Linear Integral Equations, Springer-Verlag, Applied Math Sciences 82, 1989.

16. Schippers, H.: The Automatic Solution of Fredholm Equations of the Second Kind. Report

NW 99/80, Mathematisch Centrum, Amsterdam 1980.

17. Schippers, H.: Application of Multigrid Methods for Integral Equations to Two Problems

from Fluid Dynamics. J. of Comp. Physics, Vol 48, 1982, pp. 441-461.

18. Stetter, H.J.: The Defect Correction Principle and Discretization Methods, Numer. Math.,

Vol. 29, 1978, pp. 425-443.

343

AN OBJECT-ORIENTED APPROACH FOR PARALLEL
MESH REFINEMENT ON BLOCK STRUCTURED GRIDS 1

Max Lemke 2 and Kristian Witsch

Mathematisches Institut der Universit_it Diisseldorf, Germany / _ 7/_-(,¢,

Computational Mathematics Group, University of Colorado, Denver

SUMMARY

Self-adaptive mesh refinement dynamically matches the computational demands of a solver for

partial differential equations to the activity in the.application's domain. In this paper we present
two C÷+ class libraries, P-b-t- and AMR++, which significantly simplify the development of

sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory
architectures. The development is based on our previous research in this area. The C÷+ class
libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement

applications into those of parallelism, abstracted by P÷+, and adaptive mesh refinement,
abstracted by AMR+÷. P++ is a parallel array class library to permit efficient development of
architecture independent codes for structured grid applications, and AMR÷+ provides support for

self-adaptive mesh refinement on block-structured grids of rectangular non overlapping blocks.
Using these libraries the application programmers' work is greatly simplified to primarily specifying
the serial single grid application, and obtaining the parallel and self-adaptive mesh refinement code
with minimal effort.

Initial results for simple singular perturbation problems solved by self-adaptive multilevel

techniques (FAC, AFAC), being implemented on the basis of prototypes of the P÷+/AMR+÷
environment, are presented. Singular perturbation problems frequently arise in large applications,

e.g. in the area of computational fluid dynamics. They usually have solutions with layers which
require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

INTRODUCTION

The purpose of local mesh refinement during the solution of partial differential equations

(PDEs) is to match computational demands to an application's activity: In a fluid flow problem this
means that only regions of high local activity (shocks, boundary layers, etc.) can demand increased
computational effort; regions of little flow activity (or interest) are more easily solved using only
relatively little computational effort. In addition, the ability to adaptively tailor the computational
mesh to the changing requirements of the application problem at runtime (e.g. moving fronts in
time dependent problems) provides for much faster solution methods than static refinement or even
uniform grid methods. Combined with increasingly powerful parallel computers that are becoming
available, such methods allow for much larger and more comprehensive applications to be run. With
local refinement methods, the greater disparity of scale introduced in larger applications can be
addressed locally. Without local refinement, the resolution of smaller features in the applications
domain can impose global limits either on the mesh size or the time step. The increased
computational work associated with processing the global mesh cannot be readily offset even by the
increased computational power of advanced parallel computers. Thus, local refinement is a natural
part of the use of advanced massively parallel computers to process larger and more comprehensive

applications.

1Revised and shortened version of [10]. This research has been supported by the National Aeronautics and Space Ad-

ministration under grant number NASI-18606 and the German Federal Ministry of Research and Technology (BMFT)

under PARANUSS, grant number ITR 900689.
2Part of this work belongs to the author's dissertation.

_.__ ,_ 345PR_f,_m_i>I_GPAGE BLANK NOT FILMED "PAG INTENTIONALLYB_.NK

Our experiments with different local refinement algorithms for the solution of the simple
potential flow equation on parallel distributed memory architectures (e.g. [8]) demonstrates that,
with the correct choice of solvers, performance of local refinement codes shows no significant sign of
degradation as more processors are used. In contrast to conventional wisdom, the fundamental
techniques used in our adaptive mesh refinement methods do not oppose the requirements for

efficient vectorization and parallelization. However, the best choice of the numerical algorithm is
highly dependent on its parallelization capabilities, the specific application problem and its adaptive
grid structure, and, last but not least, the target architectures' performance parameters. Algorithms
that are expensive on serial and vector architectures, but are highly parallelizable, can be superior
on one or several classes of parallel architectures.

Our previous work with parallel local refinement, which was done in the C language to better
allow access to dynamic memory management, has permitted only simplified application problems
on non block structured composite grids of rectangular patches. The work was complicated by the
numerical properties of local refinement, including self adaptivity and their parallelization
capabilities like, for example, static and dynamic load balancing. In particular, the explicit
introduction of parallelism in the application code is very cumbersome. Software tools for

simplifying this are not available, e.g., existing grid oriented communication libraries (as used in [6])
are far too restrictive to be efficiently applied to this kind of dynamic problem. Thus, extending this
code for the solution of more general complex fluid flow problems on complicated block structured
grids is limited by the software engineering problem of managing the large complexities of the
application problem, the numerical treatment of self-adaptive mesh refinement, complicated grid
structures, and explicit parallelization. The development of codes that are portable across different
target architectures and that are applicable to not just one problem and algorithm, but to a larger
class, is impossible under these conditions.

Our solution to this software difficulty presents abstractions as a means of handling the
combined complexities of adaptivity, mesh refinement, the application specific algorithm, and
parallelism. These abstractions greatly simplify the development of algorithms and codes for

complex applications. As an example, the abstraction of parallelism permits the development of
application codes (necessarily based on parallel algorithms as opposed to serial algorithms, whose
data and computation structures do not allow parallelization) in the simplified serial environment,
and the same code to be executed in a massively parallel distributed memory environment.

This paper introduces an innovative set of software tools to simplify the development of parallel
adaptive mesh refinement codes for difficult algorithms. The tools are present in two parts, which
form C÷+ class libraries and allow for the management of the great complexities described above.

The first class library, P++ (short summary in Section 2, details in [10]), forms a data parallel
superset of the C÷+ language with the commercial C÷+ array class library M-t-+ (Dyad Software
Corporation). A standard C÷+ compiler is used with no modifications of the compiler required.
The second set of class libraries, AMR÷+ (Section 3), forms a superset of the C++/M++, or P++,
environment and further specifies the combined environment for local refinement (or parallel local
refinement). In Section 4 we introduce multilevel algorithms that allow for the introduction of

self-adaptive mesh refinement (Asynchronous) Fast Adaptive Composite Methods (FAC and
AFAC)). In Section 5, we present first results for a simple singular perturbation problem that has
been solved using FAC and AFAC algorithms being implemented on the bases of AMR+÷ and

P÷+ prototypes, This problem serves as a good model problem for complex fluid flow applications,
because several of the properties that are related to self-adaptive mesh refinement axe already
present in it.

We are particularly grateful to Steve McCormick, without whose support this joint work would
not have been possible, and to the people at the Federal German Research Center Jiilich (KFA) for
their generous support in letting us use their iPSC/860 environment. In addition we would like to

thank everybody who discussed P÷÷ or AMR÷÷ with us or in any other way supported our work.

346

P++, A PARALLEL ARRAY CLASSLIBRARY FOR STRUCTURED GRIDS

P++ is an innovative, robust, and architecture-independentarray classlibrary that simplifies
the developmentof efficientparallel programsfor largescalescientific applicationsby abstracting
parallelism. The target machinesarecurrent and evolving massivelyparallel distributed memory
multiprocessorsystems(e.g. Intel iPSC/860 and PARAGON, ConnectionMachine5, Cray MPP,
IBM RS 6000networks)with different typesof nodearchitectures(scalar,vector, or superscalar).
Through the useof portable communicationand tool libraries (e.g. EXPRESS, ParaSoft
Corporation), the requirementsof sharedmemorycomputersarealsoaddressed.The P++ parallel
array classlibrary is implementedin standardC++ usingthe serialM++ array classlibrary, with
absolutely no modification of the compiler. P++ allowsfor softwaredevelopmentin the preferred
serialenvironment, and suchsoftwareto be efficiently run, unchanged,in all target environments.
The runtime support for parallelism is both completelyhidden and dynamic sothat array partitions
neednot be fixed during execution.The addeddegreeof freedompresentedby parallel processingis
exploited by useof an optimization modulewithin the array classinterface. For detail, pleaserefer
to [10].

Application class: The P++ application class is currently restricted to structured grid-oriented
problems, which form a primary problem class currently represented in scientific supercomputing.
This class is represented by dimensionally independent block structured grids (1D - 4D) with
rectangular or logically rectangular grid blocks. The M++ array interface, which is also used as the

P++ interface and whose functionality is similar to the array features of Fortran 90, is particularly
well suited to express operations on grid blocks to the compiler and to the P++ environment at
runtime.

Programming Model aT,t Parallcli._m: P++ is based on a Single Program Multiple Data Stream
(SPMD) programming model, which consists of executing one single program source on all nodes of
the parallel system. Its combination with the Virtual Shared Grids (VSG) model of data parallelism
(a restriction of virtual shared memory to structured grids, whose communication is controlled at

runtime) is essential for the simplified representation of the parallel program using the serial

program and hiding communication within the grid block classes. Besides different grid partitioning
strategies, two communication update principles are provided and automatically selected at
runtime: Overlap Update for very efficient nearest neighbor grid element access of aligned data and
VSG Update for general grid (array) computations. By use of local partitioning tables,

communication patterns are derived at runtime, and the appropriate send and receive messages of
grid portions are automatically generated by P++ selecting the most efficient communication
models for each operation. As opposed to general Virtual Shared Memory implementations, VSG
allows for obtaining similar parallel performance as for codes based on the traditionally used explicit
Message Passing programming model. Control flow oriented functional parallelism until now is not
particularly supported in P++. However, a cooperation with the developers of CC++ ([4]) is
planned.

Summary of P++ F,'.at,ures:

Object oriented indexing of the array objects simplifies development of serial codes by
removing error prone explicit indexing common to/br or do loops.

Algorithm and code development takes place in a serial environment. Serial codes are
re-compilable to run in parallel without modification.

P++ codes are portable between different architectures' Vectorization, parallelization and data
partitioning are hidden from the user, except for optimization switches.

P++ application codes exhibit communication as efficiently as codes with explicit message
passing. With improved C++ compilers and an optimized implementation of M++, single
node performance of C++ with array classes has the potential to approximate that of Fortran.

347

Current State, Perfo_1_a_ce I._sues and Related Wor_:: The P++ prototype is currently

implemented on the bases of the AT&T C++ C-Front precompiler using the Intel NX-2
communication library (or, on an experimental basis, an EXPRESS-like portable communication

library from Caltech). Current versions are running on the Intel iPSC/860 Hypercube, the Intel
Simulator, SUN workstations, the Cray 2, and IBM PCs. The prototype contains all major concepts
described above. At several points, without loss of generality, its functionality is restricted to the
needs within our own set of test problems (3D multigrid codes and FAC/AFAC codes).

The feasibility of the approach has been proven by the successful implementation and use of our

set of test problems on the basis of P++, in particular, the very complex AMR++ class library. The
results that have been obtained with respect to parallel efficiency, whose optimization was one of the

major goals of the P++ development, are also very satisfying: Comparisons for P++ and Fortran
with message passing based test codes, respectively, have shown that the number of messages and
the amount of communicated data is roughly the same. Thus, besides a negligible overhead, similar

parallel efficiency can be achieved. With respect to single node performance, only little optimization
has been done. The major reason is that the used system software components (AT&T C++
C-Front precompiler 2.1, M++) are not very well optimized for the target machines. However, our

experiences with C++ array language class libraries on workstations and on the Cray Y-MP (in
collaboration with Sandia National Laboratories: about 90% of the Fortran vector performance is

achieved) are very promising: With new optimized system software versions, Fortran performance
can be approximated. Therefore, altogether, we expect the parallel performance for P++ based
codes to be similar to that obtained for optimized Fortran codes with explicit message passing.

AMR++, AN ADAPTIVE MESH REFINEMENT CLASS LIBRARY

AMR++ is a C++ class library that simplifies the details of building self-adaptive mesh

refinement applications. The use of this class library significantly simplifies the construction of local
refinement codes for both serial and parallel architectures. AMR++ has been developed in a serial

environment using C++ and the M++ array class interface. It runs in a parallel environment,
because M++ and P++ share the same array interface. The nested set of abstractions provided by
AMR++ uses P++ at its lowest level to provide architecture independent support. Therefore,
AMR++ inherits the machine targets of P++, and, thus, has a broad base of machines on which to
run. The efficiency and performance of AMR++ is mostly dependent on the efficiency of M++ and

P++, in the serial and parallel environments respectively. In this way, the P++ and AMR++ class
libraries separate the abstractions of local refinement and parallelism to significantly ease the
development of parallel adaptive mesh refinement applications in an architecture independent
manner. The AMR++ class library represents work which combines complex numerical, computer

science, and engineering application requirements. Therefore, the work naturally involves
compromises in its initial development. In the following sections, the features and current
restrictions of the AMR++ class library are summarized.

Block: Structured Grids Features and Re.strictions: The target grid types of AMR++ are 2D
and 3D block structured with rectangular or logically rectangular blocks. On the one hand, they

allow for a very good representation of complex internal geometries introduced through local
refinement in regions with increased local activity. This flexibility of local refinement block
structured grids equally applies to global block structured grids that allow for matching complex
external geometries. On the other hand, the restriction to structures of rectangular blocks, as
opposed to fully unstructured grids, allows for the application of the VSG programming model of
P++ and, therefore, is the foundation for good efficiency and performance in distributed
environments, which is one of the major goals of the P++/AMR++ development. Thus, we believe
that block structured grids are the best compromise between full generality of the grid structure
and efficiency in a distributed parallel environment. The application class forms a broad cross

section of important scientific applications.

348

In the following, the global grid is the finest uniformly discretizedgrid that coversthe whole
physical domain. Local refinementgrids are formed from the global grid, or recursivelyfrom

Jh in eachcoordinate direction. Thus,refinementgrids, by standard refinementwith h fine = 2 coars_

boundary lines of block structured refinement grids always match grid lines on the underlying
discretization level. The construction of block structured grids in AMR++ has some practical

limitations that simplify the design and use of the class libraries. Specifically, grid blocks at the
same level of discretization cannot overlap. Block structures are formed by distinct or connected

rectangular blocks that share their boundary points (block interfaces) at those places where they
adjoin each other. Thus, a connected region of blocks forms a block structured refinement grid. It is
possible that one refinement level consists of more than one disjunct block structured refinement
grid. In the dynamic adaptive refinement procedure, refinement grids can be automatically merged,

if they adjoin each other.

2.1.2

It

13l_I

\

\
\

\.

[3.2 2.1.2 l

2.2

...................................t...........
_,.:..................... i......................... J

i

I
i

i
]

1

1
I 2.1.1

Rrid block

F.............
........j extended boundary

block interface

(a) 3-1evel composite grid (b) adjoining

grid blocks

(c) composite grid tree

Figure 1: Example of a composite grid, its composite grid tree, and a cut out of 2 blocks with their

extended boundaries and interface.

In Figure 1 (a), an example for a composite grid is illustrated: The composite grid shows a
rectangular domain within which we center a curved front and a corner singularity. The grid blocks
are ordered lexicographically: the first digit represents the level, the second digit the connected
block structured refinement grid, and the third digit the grid block. Such problems could represent
the structure of shock fronts or multi-fluid interfaces in fluid flow applications: In oil reservoir

simulations, for example, the front could be an oil water front moving with time and the corner

singularity could be a production well. In this specific example, the front is refined with two block
structured refinement grids: the first grid on refinement level 2 is represented by grid blocks 2.1.1
and 2.1.2, and the second grid on level 2 by grid blocks 3.1.1, 3.1.2 and 3.1.3. In the corner on each

of the levels, a single refinement block is introduced.

For ease of implementation, in the AMR++ prototype the global grid must be uniform. This

simplification of the global geometry was necessary in order to be able to concentrate on the major
issues of this work, namely, the implementation of local refinement and self adaptivity in an
object-oriented environment. This restriction is not critical and can be eased in future versions of
the prototype. Aside from implementation issues, some additional functionality must be made
available:

349

For implicit solvers,the resulting domain decompositionof the global grid may requirespecial
capabilities within the singlegrid solvers(e.g.,multigrid solversfor block structured grids with
adequatesmoothers,suchasinter-block line or plane relaxation methods).

The block structures in the current AMR++ prototype are definedonly by the needsof local
refinementof a uniform global grid. This restriction allowsthem to be Cartesian. More

complicated structures as they result from difficult non Cartesian external geometries (e.g.,
holes; see [11]) currently are not taken into consideration. An extension of AMR++, however,
is principally possible. The wide experience for general 2D block structured grids that has been
gained at GMD [11] can form a basis for these extensions. Whereas our work is comparably
simple in 2D, because no explicit communication is required, extending the GMD work to 3D
problems is very complex.

Some Implementation L_sues: In the following, some implementation issues are detailed. They
also demonstrate the complexity of a proper and efficient treatment of block structured grids and
adaptive refinement. AMR++ takes care of all of these issues, which would otherwise have to be
handled explicitly at the application level.

• Dimensional independence and multi-indexing: The implementation of most features of
AMR++ and its user interface is dimensionally independent. Being derived from user
requirements, on the lowest level, the AMR++ prototype is restricted to 2D and 3D
applications. This, however, is a restriction that can easily be removed.

One important means by which dimensional independence is reached, is multi-dimensional
indices (multi-indices), which contain one index for each coordinate direction. On top of these
multi-indices are index variants defined for each type of sub-block (interior, interior and
boundary, boundary only, ...), which contain multiple multi-indices. For example, for
addressing the boundary of a 3D block (non-convex), one multi-index is needed for each of the
six planes. In order to avoid special treatment of physical boundaries, all index variants are
defined twice, including and excluding the physical boundary, respectively. All index variants,

several of them also including extended boundaries (see below), are precomputed at the time
when a grid block is allocated. In the AMR++ user interface and in the top level classes, only
index variants or indicators are used _nd, therefore, allow a dimensionally independent
formulation, except for very low level implementations.

• Implementation of block structured grids: The AMR++ grid block objects consist of the
interior, the boundary, an extended boundary of a grid block, and links that are formed
between adjacent pairs of grid block objects. The links contain P++ array objects that do not
consist of actual data, but serve as views (subarrays) of the overlapping parts of the extended
boundary between adjacent grid block objects. The actual boundaries that are shared between
different blocks (block interfaces) are very complex structures that are represented properly in
the grid block objects. For example, in 3D, interfaces between blocks are 2D planes, those
between plane-interfaces are 1D-line interfaces, and, further, those between line-interfaces are
points (zero-dimensionai).

In Figure 1 (b), grid blocks 2.1.1 and 2.1.2 of the composite grid in Figure 1 (a) are depicted
including their block interface and their extended boundary. The regular lines denote the
outermost line of grid points of each block. Thus, with an extended boundary of two, there is
one line of points between the block boundary line and the dashed line for the extended

boundary. In its extended boundary, each grid block has views of the values of the original grid
points of its adjoining neighboring block. This way it is possible to evaluate stencils on the
interface and, with an extended boundary width of two, to also define a coarse level of the
block structured refinement grid in multigrid sense.

• Data structures and iterators: In AMR++, the composite grid is stored as a tree of all
refinement grids, with the global grid being the root. Block structured grids are stored as lists
of blocks (for ease of implementation; collections of blocks would be sufficient in most cases).

350

In Figure 1 (c), the composite grid tree for the example composite grid in Figure 1 (a) is
illustrated.

The user interface for doing operations on these data structures are so-called iterators. For

example, for an operation on the composite grid (e.g., zeroing each level or interpolating a grid
function to a finer level), an iterator is called that traverses the tree in the correct order
(preorder, postorder, no order). This iterator as arguments takes the function to be executed
and two indicators that specify the physical boundary treatment and the type of sub grid to be
treated. The iteration starts at the root and recursively traverses the tree. For doing an

operation (e.g. Jacobi relaxation) on a block structured grid, iterators are available, that
process the list of blocks and all block interface lists. They take arguments similar to those for

the composite grid tree iterators.

Object-Oriented Design and User Interface: The AMR++ class libraries are customizable by
using the object oriented features of C++. For example, in order to obtain efficiency in the parallel
environment, it may be necessary to introduce alternate iterators that traverse the composite grid
tree or the blocks of a refinement region in a special order. This is implemented by alternate use of
different base classes in the serial and parallel envir0nment. The same is true for alternate

composite grid cycling strategies as, for example, needed in AFAC, in contrast to FAC algorithms

(Section 4). Application specific parts of AMR++, such as the single grid solvers or criteria for
adaptivity, which have to be supplied by the user, are also simply specified through substitution of
alternate base classes: A pre-existing application (e.g., problem setup and uniform grid solver) uses
AMR++ to extend its functionality and to build an adaptive mesh refinement application. Thus,

the user supplies a solver class and some additional required functionality (refinement criteria, ...)
and uses the functionality of the highest level AMR++ ((Self_)Adaptive_)Composite_Grid class to

formulate his special algorithm or to useone of the supplied PDE solvers. In the current prototype
of AMR++, FAC and AFAC based solvers (Section 4) are supplied. If the single grid application is
written using P++, then the resulting adaptive mesh refinement application is architecture
independent, and so can be run efficiently in a parallel environment.

The design and interface of AMR++ is object-oriented and the implementation of our

prototype extensively uses features like encapsulation and inheritance: The abstraction of
self-adaptive local refinement, which involves the handling of many issues (including memory
management, interface for application specific control, dynamic adaptivity, and efficiency), is
reached through grouping these different functionalities in several interconnected classes. For
example, memory management is greatly simplified by the object oriented organization of the
AMR++ library: Issues such as lifetime of variables are handled automatically by the scoping rules
for C++, so memory management is automatic and predictable. Also, the control over construction
of the composite grid is intuitive and natural: The creation of composite grid objects is similar to
the declaration of floating point or integer variables in procedural languages like Fortran and C. The
user basically formulates a solver by allocating one of the predefined composite grid solver objects,
or by formulating it on the basis of the composite grid objects and associated iterators and by

supplying the single grid solver class.

Although not part of the current implementation of AMR++, C++ introduces a template
mechanism in the latest standardization of the language, which is only just beginning to be part of

commercial products. The general purpose of this template language feature is to permit class
libraries to access user specified base types. For AMR++, for example, the template feature could
be used to allow the specification of the base solver and adaptive criteria for the parallel adaptive
local refinement implementation. In this way, the construction of an adaptive local refinement code

from the single grid application on the basis of the AMR++ class library can become even simpler
and cleaner. The object-oriented design of interconnected classes will not be further discussed. The

reader is referred instead to [10] and [7].

Static and Dynamic Adaptivity, Grid Generation: In the current AMR++ prototype, static
adaptivity is fully implemented. The user can specify a composite grid either interactively or by

351

someinput file: For eachgrid block, AMR++ needsits global coordinatesand the parent grid
block. Block structured local refinementregionsare formedautomatically by investigating
neighboringrelationships. In addition, the functionalities for adding and deleting grid blocks under
usercontrol are availablewithin the Adaptive_Composite_Gridobject of AMR++.

Recently,dynamic adaptivity hasbeena subject of intensiveresearch.Initial resultsarevery
promising,and somebasic functionality hasbeenincluded in the AMR++ prototype: Given a
lobal grid, a flagging criteria function, and somestoppingcriteria, the
elf_Adaptive_Composite_Gridobject containsthe functionality for iteratively solvingon the actual

compositegrid and generatinga new discretization levelon top of the respectivefinest level.
Building a new compositegrid level worksasfollows:

1. The flagging criteria deliversan unstructured collectionof flaggedpoints in eachgrid block.
For representinggrid block boundaries,all neighboringpoints of flaggedpoints arealso flagged.

. The new set of grid blocks to contribute to the refinement level (gridding) is built by applying
a smart recursive bisection algorithm similar to the one developed in [2]: If building a rectangle
around all flagged points of the given grid block is too inefficient, it is bisected in the longer
coordinate direction and new enclosing rectangles are computed. The efficiency of the
respective fraction is measured by the ratio of flagged points to all points of the new grid block.
In the following tests, 75% is used. This procedure is repeated recursively if any of the new
rectangles is also inefficient. Having the goal of building the rectangles as large as possible
within the given efficiency constraint, the choice of the bisection point (splitting in halves is
too inefficient because it results in very many small rectangles) is done by a combination of
signatures and edge detection. A detailed description of this method reaches beyond the scope
of this paper, so the reader is referred to [2] or [7].

o Finally, the new grid blocks are added to the composite grid to form the new refinement level.

Grouping these blocks into connected block structured grids is done the same way as it is done
in the static case.

This flagging and gridding algorithm has the potential for further optimization: The bisection
method can be further improved, and a clustering and merging algorithm could be applied. This is
especially true for refinement blocks of different parent blocks that could form one single block with
more than one parent. Internal to AMR++, this kind of parent / child relationship is supported.
The results in Section 5, however, show that the gridding already is quite good. The number of
blocks that are constructed automatically is only slightly larger (< 10%) than a manual
construction would deliver. A next step in self-adaptive refinement would be to support time

dependent problems whose composite grid structure changes dynamically with time (e.g., moving

fronts). In this case, in addition to adding and deleting blocks, enlarging and diminishing blocks
must be supported. Though some basic functionality and the implementation of the general concept
is already available, this problem has not yet been further pursued.

Current State and Related Worl:: The AMR÷+ prototype is implemented using M-t-+ and the
AT&T Standard components class library to provide standardized classes (e.g., linked list classes).
Through the shared interface of M++ and P++, AMR++ inherits all target architectures of P++.
The prototype has been successfully tested on SUN workstations and on the Intel iPSC/860, where

it has proved its full functionality with respect to parallelization. Taking into account the large
application class of AMR÷+, there are still several insufficiencies and restrictions, as well as a large
potential for optimization. For parallel environments, e. g., efficiently implementing self-adaptivity,
including load (re)balancing, requires further research. In addition, the iterators that are currently
available in AMR++, though working in a parallel environment, are best suited for serial
environments. Special parallel iterators that, for example, support functional parallelism on the
internal AMR÷÷ level would have to be provided. Until now, AMR÷÷ has been successfully used
as a research tool for the algorithms and model problems described in the next two sections.

352

However,AMR++ providesthe functionality to implementmuchmorecomplicatedapplication
problems.

Concerningparallelization, running AMR++ under P++ on the Intel iPSC/860 hasprovenits
full functionality. Intensive optimization, however,hasonly beendonewithin P++. AMR++ itself
offersa largepotential for optimization........

To the authors' knowledge,the AMR++ approachis unique. There areseveralother
developmentsin this area (e.g. [11]),but they either addressa more restrictedclassof problemsor
are restricted to serial environments.

I

MULTILEVEL ALGORITHMS WITH ADAPTIVE MESH REFINEMENT

The fast adaptive composite grid method (FAC, [12]), which was originally developed from and
is very similar to the Multi-Level Adaptive Technique (MLAT, [3]), is an algorithm that uses
uniform grids, both global and local, to solve partial differential equations. This method is known
to be highly efficient on scalar or single processor vector computers, due to its effective use of
uniform grids and multiple levels of resolution of the solution. On distributed memory
multiprocessors, methods like MLAT or FAC benefit from their tendency to create multiple isolated
refinement regions, which may be effectively treated in parallel. However, for several problem
classes, they suffer from the way in which the levels of refinement are treated sequentially in each
region. Specifically, the finer levels must wait to be processed until the coarse-level approximations
have been computed and passed to them; conversely, the coarser levels must wait until the finer
level approximations have been computed and used to correct their equations. Thus, the
parallelization potential of these "hierarchical" methods is restricted to intra-level parallelization.

The asynchronous fast adaptive composite method (AFAC) eliminates this bottleneck of
parallelism. Through a simple mechanism used to reduce inter-level dependencies, individual
refinement levels can be processed by AFAC in parallel The result is that the convergence rate fox
AFAC is the square root of that for FAC. Therefore, since both AFAC and FAC have roughly the
same number of floating point operations, AFAC requires twice the serial computational time as

FAC, but AFAC allows for the introduction of inter-level parallelization.

As opposed to the original development of FAC and AFAC, in this paper, the modified
algorithms known as FACx and AFACx are discussed and used. They differ in the treatment of the
refinement levels. Whereas in FAC and AFACI a rather accurate solution is computed (e.g., one

MG V-cycle), FACx uses only a couple of rei_ati0ns. AFACx uses a two-grid procedure (of
FMG-type) on the refinement level and its standard coarsening with several relaxations on each of
these levels. Experiments and some theoretical observati0ns show that all of the results that have
been obtained for FAC and AFAC also hold for FACx and AFACx (see [14]). In the following, FAC

and AFAC always denote the modified versions (FACx and AFACx).

Numerical algorithms: Both FAC (MLAT) and AFAC consist of two basic steps, which are

described loosely as follows:

1. Smoothing phase: Given the solution approximation and composite grid residuals on each level,
use relaxation or some restricted multigrid procedure to compute a correction local to that level

(a better approximation is required on the global grid, the finest uniform discretization level).

2. Level transition phase: Combine the local corrections with the global solution approximation,

compute the global composite grid residual, and transfer the local components of the
approximation and residual to each level.

The difference between MLAT and FAC on the one hand and AFAC on the other hand is in the

order in which the levels are processed and in the detail§ of how they are combined:

353

• FAC and MLAT can roughly be viewedasstandard multigrid methodswith meshrefinement
and a specialtreatment of the interfacesbetweenthe refinementlevelsand the underlying
coarselevel. In FAC and MLAT the treatment of the refinementlevels is hierarchical. Theory
on FAC is basedon its interpretation asa multiplicative SchwarzAlternating Method or as a
block relaxation method of Gauss-Seideltype.

FAC and MLAT mainly differ by their motivation. Whereasit is the goal of FAC to computea
solution for the compositegrid (grid points of the compositegrid areall the interior points of
the respectivefinest discretization level), the major goalof MLAT is to get the best possible
solution on a givenuniform grid (with using local refinement). Thus, in FAC, coarselevelsof
the compositegrid servefor the computationof corrections.Therefore,FAC wasoriginally
formulated asa correctionscheme(CS). The MLAT formulation requiresa full approximation
scheme(FAS), becausecoarselevelsserveascorrection levelsfor the points coveredby finer
levels. MLAT wasfirst developedusing finite differencediscretization,whereasfor FAC finite
volume discretizationswereused.However,they arecloselyrelated and in many problemslead
to the samestencil representation.This is true exceptperhapsfor the interface points, where
finite volumediscretizationsgenerally leadto conservativediscretizations(FAC), whereasfinite
differencediscretizationsdo not (MLAT). Instead, in MLAT, usuallya higher order
interpolation is usedon the interface. Other than this exception,becauseof the modification of
the original FAC algorithm asdiscussedabove,there is no differencein the treatment of the
refinement levelsbetweenthe original MLAT algorithm and the modified FAC algorithm that
is discussedin this paper. It can be shown([7]) that an FASversionof FAC with a special
choiceof the operatorson the interfaceis equivalentto the originally developedMultilevel
Adaptive Technique(MLAT).

• AFAC on the other hand consistsof the samediscretization and operatorsasFAC, but a
decoupledand asynchronoustreatment of the refinementlevelsin the solution phase,which
dominatesthe arithmetic work in the algorithm. Theory on AFAC can bebasedon its
interpretation as an additive SchwarzAlternating Method or as a block relaxation method of
Jacobi type.

Theory in [12]showsthat, under appropriateconditions, the convergencefactorsof FAC and
AFAC havethe relation PAFAC = fl_. This implies that two cycles of AFAC are roughly

equivalent to one cycle of FAC. If the algorithmic components are chosen slightly different than for
the convergence analysis or if applied to singular perturbation problems as discussed in the next
section, experiences show that AFAC is usually better than as suggested by the above formula: In

several cases, the convergence factor of AFAC shows only a slight degradation of the FAC rate
(Section 5).

Paratlelization an Example for the Use of P÷÷/AMR÷÷: By example, we demonstrate
some of the features of AMR++ and examples for the support of P++ for the design of parallel
block structured local refinement applications on the basis of FAC and AFAC algorithms.

In a parallel environment, partitioning the composite grid levels becomes a central issue in the
performance of composite grid solvers. In Figure 2, two different partitioning strategies that are
supported within P++/AMR++ are illustrated for the composite grid in Figure 2. For ease of
illustration, grid blocks 2.2 and 2.3 are not included. The so-called FAC partitioning in Figure 2 (b)
is typical for implicit and explicit algorithms, where the local refinement levels have to be treated in
a hierarchical manner (FAC, MLAT,...). The so-called AFAC partitioning in Figure 2 (a) can be
optimal for implicit algorithms that allow an independent and asynchronous treatment of the
refinement levels. In the case of AFAC, however, it must be taken into consideration that this
partitioning is only optimal for the solution phase, which dominates the arithmetic work of the
algorithm. The efficiency of the level transition phase, which is based on the same hierarchical
structure as FAC and which can eventually dominate the aggregate communication work of the

algorithm, highly depends on the architecture and the application (communication / computation
ratio, single node (vector) performance, message latency, transfer rate, congestion, ...). For

354

< >

O ©

overlap update

VSG update

block interface update

_I.I

2.1_.

G-- -----_

-->

i

J

•4----- -._----_

(a) AFAC-partitioning

2.1._ [
ro
P

E

t

f'
i

! [

i
! i

(b) FAC-partitioning

i
i _.i.1
I

i

°i

Figure 2: Parallel multilevel local refinement algorithms on block structured grids -- an example for
the use of AMR++ and the hidden interaction of the P++ communication models.

determining whether AFAC is better than FAC in a parallel environment, the aggregate efficiency
and performance of both phases and the relation of the convergence rates must be properly
evaluated. For more detail, see [10] and [7]. Both types of partitioning are supported in the

P++/AMR++ environment.

Solvers used on the individually partitioned composite grid levels make use of overlap updates
within P++ array expressions, which automatically provide communication as needed. The

inter-grid transfers between local refinement levels, typically located on different processors, rely on
VSG updates. The VSG updates are also provided automatically by the P++ environment. Thus,
the underlying support of parallelism is isolated in P++ through either overlap update or VSG
update, or a combination of both, and the details of parallelism are isolated away from the AMR++

application. The block structured interface update is handled in AMR++. However,
communication is hidden in P++ (mostly the VSG update).

RESULTS FOR SINGULAR PERTURBATION PROBLEMS

Use of the tools described above is now demonstrated with initial examples. The adaptivity

provided by AMR++ is necessary in case of large gradients or singularities in the solution of the
PDE. They may be due to rapid changes in the right-hand side or coefficients of the PDE, corners
in the domain, or singular perturbations. Here, the first and the last case will be examined on the

basis of model problems.

Singularly perturbed PDEs represent the modelling of physical processes with relatively small
diffusion (viscosity) and dominating convection. They may occur as a single equation or within

355

systems of complex equations, e.g., as the momentum equations within the Navier-Stokes or, in
addition, as supplementary transport equations in the Boussinesq system of equations. Here, we
merely treat a single equation. However, we only use methods that generalize directly to more
complex situations. Therefore, we do not rely on the direct solution methods provided by
downstream or ILU relaxations for simple problems with pure upstream discretization. The latter
are not direct solution methods for systems of equations. Further, these types of flow direction

dependent relaxations are not efficiently parallelizable in the case of only a few relaxations as is
usually used in multilevel methods. This in particular holds on massively parallel systems.

(a) Error for S |evels t[]ll[_]_'_.

o, n = 12306

°i

0,5 _ 1

0

I /_ (b_ErrorforS'.o_
o.o, I=°°°1

°i':
0.5 _ I

i

ill Iiii I
tl I tlllil

. IItL

t:)J t lq i-11
tll

til Jliil I

2]llll ILLI [L
!!!!.L!

!lllll

ikl 41ii14

i 1 I I I t lllilllllii,,

-H+H b_
i t I I I 1 H-H_IIII1_

]tli11_

tllll_IlL ..

]lltti_

IJ tk:_

11H-F_
IItMA_
II11t_
!lllll_
iIIitf_

Figure 3: Results for a singular perturbation problem: Plots of the error and composite grid, with

two different choices of the accuracy _? in the self-adaptive refinement process.

Model Problem and Solvers: Numerical results have been obtained for the model problem

--_Au + aux + bu_ = f on f_ : (0, 1) 2

with Dirichlet boundary conditions on 0f_ and _ = 0.00001. This problem serves as a good model
for complex fluid flow applications, because several of the properties that are related to self-adaptive
mesh refinement are already present in this simple problem. The equation is discretized using

356

isotropic artificial viscosity (diffusion):

Lh := --_hAh + aD2h,xU-6 bD2h,_U with Ah = D 2h,x

eh := max{e, flhmax{lal,]bl}/2}

+ D 2
h,y

The discrete system is solved by multilevel methods - MG on the finest global grid and FAC or
AFAC on composite grids with refinement. For the muitigrid method, it is known that, with
artificial viscosity, the two-grid convergence factor (spectral radius of the corresponding iteration

matrix) is bounded below by 0.5 (for h _ 0). Therefore, multilevel convergence factors converge to
1.0 with an increasing number of levels. In [5], a multigrid variant which shows surprisingly good
convergence behavior has been developed: MG convergence factors stay far below 0.5 (with three

relaxations on each level). Here, essentially this method is used, which is described as follows:

• Discretization with additional isotropic artificial viscosity using/9 = 3 on the finest grid m and

l-1 : 1/2 (ill + 1/) for coarser grids I = m - 1, m - 2,...,

• MG components: odd/even relaxation, non-symmetric transfer operators corresponding to
linear finite elements. These components fulfil the Galerkin condition for the Laplacian.

Anisotropic artificial viscosity may also be used, but generally requires (parallel) zebra line
relaxation, which has not yet been fully implemented.

For FAC and AFAC, the above MG method with V(2,1) cycling is used as a global grid solver.
On the refinement levels, three relaxations are performed, and fl = 3 is chosen on refinement grids.

Convergence Results: In Table 1, several convergence factors for FAC, AFAC, and, for
comparison, for MC are shown. The finest grids have mesh sizes of h = 1/64 or h = 1/512,
respectively. For FAC and AFAC, the global grid has the mesh size h = 1/32, the (predetermined)
fine block always covers 1/2 of the parent coarse block along the boundary layer. The following
conclusions can be drawn:

• For MG, the results are as expected. In the case of FAC and AFAC, the choice of fl has to be
further investigated.

• V cycles are used; W or F cycles would yield better convergence rates but worse parallel
efficiency.

• If p(FAC) is small, the expected result p(AFAC) _ Cp(FAC) can be observed, otherwise

p(FAC) _ p(AFAC) << Cp(FAC).

h

MG-V

FAC

AFAC

Poisson

1/6411/512
0.14 0.14

0.17 0.18

0.40 0.41

SPP: _ = 3

1/64 1/512

0.17 0.30

0.30 0.65

0.41 0.67

SPP: N = 1

1/64 1/512
0.18 0.50

0.30 0.80

0.45 O.95

Table 1: Convergence factors for a singular perturbation problem (SPP: a = b = I, s = 0.00001) and,

for comparison, for Poisson's equation.

Self-Adaptive Mesh R,'finement Results: More interesting for the goal of this paper are
applications of the self-adaptive process. As opposed to the convergence rates, they do not depend

357

only on the PDE, but also on the particular solution. The results in this paper have been obtained
for the exact solution

u(x) = e(Z-1)/e- e-lie 1 e_100(=2+(y_l)2),
1 - e-l/_ +

which has a boundary layer for x -- 1, 0 < y < 1 and a steep hill around x = 0, y = 1. In order to
measure the error of the approximate solution, a discrete approximation to the L1 error norm is
used. This is appropriate for this kind of problem: For solutions with discontinuities of the above

type, one can observe 1st order convergence only with respect to this norm (no convergence in the
Lo_ norm, order 0.5 in the L2 norm).

The results have been obtained using the flagging criteria

h f [flhma {lal, Ibl}(IO ,xut + ID , ul)] _

with a given value of r/. For e < eh, the second factor is an approximation to the lowest order error
term of the discretization. Based on experiments, f = 1 is a good choice. Starting with the global
grid, the composite grid is self-adaptively built on the basis of the flagging and gridding algorithm
described in Section 3.

h

1/32
1/64

1/128
1/256

1/512

MG-V

uniform

e

0.0293

0.0159

O.OO83

0.0043

0.0023

7/--- 0.02

I n e

961 0.0293

3969 0.0160

16129 0.0089

65025 0.0056

261121 0.0073

n b

961 1

1806 4

3430 10

6378 19

12306 34

FAC

= 0.01
e n b

0.0293 961 1

0.0160 1967 4

0.0087 3971 10

0.0051 7943 16

0.0044 15909 30

r/= 0.001

e n I b

0.0293 961 1

0.0159 2757 3

0.0083 6212 7

0.0043 13473 12

0.0023 27410 22

Table 2: Accuracy (Ll-norm e) vs. the number of grid points (n) and the number of blocks (b) for

MG-V on a uniform grid and FAC on self-adaptively refined composite grids.

In Table 2, the results for MG and FAC are presented for three values of 7/. In Figure 3, two of
the corresponding block structured grids are displayed. The corresponding error plots give an
impression of the error distribution restricted from the composite grid to the global uniform grid.
Thus, larger errors near the boundary layer are not visible. The results allow the following
conclusions:

• In spite of the well known difficulties in error control of convection dominated problems, the
grids that are constructed self-adaptively are reasonably well suited to the numerical problem.

As long as the accuracy of the finest level is not reached, the error norm is approximatively
proportional to v/. As usual in error control by residuals, with the norm of the inverse operator
being unknown, the constant factor is not known.

• If the refinement grid does not properly match the local activity, convergence rates significantly
degrade and the error norm may even increase.

• Additional tests have shown that, if the boundary layer is fully resolved with an increased
number of refinement levels, the discretization order, as expected, changes from one to two.

• The gridding algorithm is able to treat very complicated refinement structures efficiently: The
number of blocks that are created is nearly minimal (compared to hand coding).

358

• Though this example needs relatively large refinement regions, the overall gain by using
adaptive grids is more than 3.5 (taking into account the different number of points and the
different convergence rates). For pure boundary layer problems, factors larger than 10 have
been observed.

• These results have been obtained in a serial environment. AMR++, however, has been
successfully tested in parallel. For performance and efficiency considerations, see Sect. 2 and 3.

References REFERENCES

[1] Balsara, D.; Lemke, M.; Quinlan, D.: AMR++, a parallel adaptive mesh refinement object
class library for fluid flow problems; Proceedings of the Symposium o77 Adaptive, Multilevel
and Hierarchical StT'atc.qies, ASME Winter Annual Meeting, Anaheim, CA, 1992.

[2] Bell, J; Berger, M.; Saltzman, J.; Welcome, M.: Three dimensional adaptive mesh refinement

for hyperbolic conservation laws; InterTqal Report., Los Alamos National Laboratory.

[3] Brandt, A.: Multi-level adaptive solutions to boundary value problems; Math. Comp., 31,
1977, pp. 333-390.

[4] Chandy, K.M.; Kesselman, C.: CC++: A Declarative Concurrent Object Oriented

Programming Notation; California Institute of Technology, Report., Pasadena, 1992.

[5] DSrfer, J.: Mehrgitterverfahren bei singul_iren StSrungen; Dissertation, Heinrich-Heine
Universit_it Diisseldorf, 1990.

[6] Hempel, R.; Lemke, M.: Parallel black box multigrid; Proceedings of the Fourth Copper
Mountain Conference on Multigrid Methods, 1989, SIAM, Philadelphia.

[7] Lemke, M.: Multilevel Verfahren mit selbst-adaptiven Gitterverfeinerungen fiir
Parallelrechner mit verteiltem Speicher; Dissertation, Universit£t Diisseldorf, to appear in
1993.

[8] Lemke, M.; Quinlan, D.: Fast adaptive composite grid methods on distributed parallel

architectures; Commu_lieations in Applied Numerical Methods, Vol. 8, No. 9, Wiley, 1992.

[9] Lemke, M.; Quinlan, D.: P++, a C++ Virtual Shared Grids Based Programming
Environment for Architecture-Independent Development of Structured Grid Applications;
Lecture Notes in CoTnputer Science, No. 634, Springer Verlag, September 1992.

[10] Lemke, M.; Quinlan, D.: An Object-Oriented Approach for Parallel Self-Adaptive Mesh
Refinement on Block Structured Grids; Proceedings of the 9th GAMM-Seminar on Adaptive
Methods, Kiel, Germany, 1993; Notes of NumeT_ical Fluid Mechanics, Vieweg, to appear.

[11] Lonsdale, G; Schfiller, A.: Multigrid efficiency for complex flow simulations on distributed
memory machines; Parallel Computing, 19, 1993, pp23 - 32.

[12] McCormick, S.: Multilevel Adaptive Methods for Partial Differential Equations; Frontiers in
Applied Mathemati(:._, SIAM, Vol. 6, Philadelphia, 1989.

[13] McCormick, S.; Quinlan, D.: Asynchronous multilevel adaptive methods for solving partial
differential equations on multiprocessors: Performance results; Parallel CoTl_p,ti'l_g, 12, 1989.

[14] McCormick, S.; Quinlan, D.: Idealized analysis of asynchronous multilevel methods;
Proceedings of the Sy'l_posium on Adaptive, _ultilevel and Hierarchical Stmte.qic._., ASME
Winter Annual Meeting, Anaheim, CA, Nov. 8 - 13, 1992.

359

Form Approved
REPORT DOCUMENTATION PAGE OMBNo 0Z04-0188

Pub c report ng burden for th s co ect_on of _nformation is estimated to average I hour per response including the time for reviewing instructions, searching existing data sources.

eatherin=and malntaninE the data needed and comptetng and reviewing the collection of informatlorLSendcommentsreEardingthis burdenestimateor any otheraspectof this
collectionof information, includingsu estionsfor reducing this burden,toWashingtonHeadquartersServices.Directorate'_orInformationOperations and Reports.1215Jefferson
Davis Highway,Suite 1204. Arlington.l_V_22202-4302,and to the Office of Managementand Budget.PaperworkReductionProject(0704-01_8). Washington.DE 2C_03,

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1993 Conference Publication

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Sixth Copper Mountain Conference on Multigrid Methods
WU 505-59-53-01

6. AUTHOR(S)

N. Duane Melson, T. A. Manteuffel, and S. F. McCormick, editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-0001 L-17275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administrationl Washington, DC AGENCY REPORT NUMBER

20546-0001; Air Force Office of Scientific Research, Bolling AFB, NASA CP-3224
Washington, DC 20338; the Department of Energy, Washington, Part 1
DC 20585; and the National Science Foundation, Washington, DC
20550.

I

11. SUPPLEMENTARY NOTES

Organizing Institutions: University of Colorado at Denver, Front Range Scientific Computations, Inc., and
the Society for Industrial and Applied Mathematics.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE

Unclassified-Unlimited

13.

Subject Category 64

ABSTRACT (Maximum 200 words)
The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper _1oun-
tain, Colorado. This book is a collection of many of the papers presented at the conference and so rcprcscnts
the conference proceedings. NASA Langley graciously provided printing of this document so that all of thc
papers could bc presented in a single forum. Each paper was rcvicwed by a mcmbcr of the confcrcncc organizing
committee under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy
in this field is amply expressed in these important papers, and the collection clcarly shows its rapid trcnd to
further diversity and depth.

14. SUBJECTTERMS
Multigrid; Algorithms; CFD

17. SECURITY CLASSIFICATION i18. SECURIT'_ CLASSIFICATION 19. SECURITY CLASSIFICATIOh

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

_ISN 7540-01-280-5500

15. NUMBER OF PAGES

368

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

;tandard Form 298(Rev. 2-89)
Prescribed byANSI Std. Z39-18
2c)8-102

i

